Abstract:
A multi-bit NVM cell includes a storage unit having resistive elements, such as phase change resistive elements. The NVM cell may be configured as a single port or dual port multi-bit cell. The NVM cell includes a cell selector. The cell selector selects the multi-bit cell. When appropriate signals are applied to the NVM cell, the cell selector selects an appropriate resistive element of the storage unit. A plurality of storage units can be commonly coupled to the cell selector, facilitating high density applications.
Abstract:
A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
Abstract:
A method for read measurement of a plurality N of resistive memory cells having a plurality M of programmable levels is suggested. The method includes a step of reading back from a number of reference cells to obtain a reading back parameter, a step of determining an actual read voltage for the N memory cells based on the obtained reading back parameter for obtaining a target read current at a following read measurement, and, a step of applying the determined actual read voltage to the N memory cells at the following read measurement.
Abstract:
According to one embodiment, a semiconductor memory device includes first cells, first lines, second lines, a first cell array, and a signal driver. The first cell has in either a first state or a second state. Retention time in the second state is longer than in the first state. The first cell array has the first cells formed in a matrix the individuals. The first cells are electrically connected by the first, second lines. The signal driver drives the first cells. The signal driver causes the first cells to transition to either the first state or the second state by controlling any one of a voltage, a current, and a charge amount applied to the first cells, or a combination of these, and waveforms of the voltage, current, and charge amount and/or the length of transfer time of at least one of the voltage, current, and charge amount.
Abstract:
Technique of operating a non-volatile memory are presented so that in case data that would otherwise be lost in the case of a word line to word line short is preserved. Before writing a word line, the data from a previously written adjacent is word line is read back and stored in data latches associated with the corresponding bit lines, but that are not being used for the data to be written. If a short occurs, as the data for both word lines is still in the latches, it can be written to a new location. This technique can also be incorporated into cache write operations and for a binary write operation inserted into a pause of a multi-state write.
Abstract:
Provided is a nonvolatile memory device using a resistance material and a method of driving the nonvolatile memory device. The nonvolatile memory device comprises a resistive memory cell which stores multiple bits; a sensing node; a clamping unit coupled between the resistive memory cell and the sensing node and provides a clamping bias to the resistive memory cell; a compensation unit which provides a compensation current to the sensing node; a sense amplifier coupled to the sensing node and senses a change in a level of the sensing node; and an encoder which codes an output value of the sense amplifier in response to a first clock signal. The clamping bias varies over time. The compensation current is constant during a read period.
Abstract:
Memory devices based on tungsten-oxide memory regions are described, along with methods for manufacturing and methods for programming such devices. The tungsten-oxide memory region can be formed by oxidation of tungsten material using a non-critical mask, or even no mask at all in some embodiments. A memory device described herein includes a bottom electrode and a memory element on the bottom electrode. The memory element comprises at least one tungsten-oxygen compound and is programmable to at least two resistance states. A top electrode comprising a barrier material is on the memory element, the barrier material preventing movement of metal-ions from the top electrode into the memory element.
Abstract:
A variable resistance nonvolatile memory element includes a first electrode, a second electrode, and a variable resistance layer including: a first oxide layer including a metal oxide having non-stoichiometric composition and including p-type carriers; a second oxide layer located between and in contact with the first oxide layer and a second electrode and including a metal oxide having non-stoichiometric composition and including n-type carriers; an oxygen reservoir region located in the first oxide layer, having no contact with the first electrode, and having an oxygen content atomic percentage higher than that of the first oxide layer; and a local region located in the second oxide layer, having contact with the oxygen reservoir region, and having an oxygen content atomic percentage lower than that of the second oxide layer.
Abstract:
According to an example embodiment, a method of operating a semiconductor device includes applying a first voltage to the variable resistance device so as to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value, sensing first current flowing through the variable resistance device to which the first voltage is applied, determining a second voltage used to change the resistance value of the variable resistance device from the second resistance value to the first resistance value based on a distribution of the sensed first current, and applying the determined second voltage to the variable resistance device.
Abstract:
A nonvolatile memory device includes: a first conductive layer; a second conductive layer; a first resistance change layer provided between the first conductive layer and the second conductive layer and having an electrical resistance changing with at least one of an applied electric field and a passed current; and a first lateral layer provided on a lateral surface of the first resistance change layer and having an oxygen concentration higher than an oxygen concentration in the first resistance change layer.