Abstract:
A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.
Abstract:
A semiconductor device includes a semiconductor substrate, and a nonvolatile memory cell provided on the semiconductor substrate, the nonvolatile memory cell including a tunnel insulating film provided on a surface of the semiconductor substrate, the tunnel insulating film including semiconductor grains, the semiconductor grains included in both end portions of the tunnel insulating film having smaller grain size than the semiconductor grains included in other portions of the tunnel insulating film, a charge storage layer provided on the tunnel insulating film, an insulating film provided on the charge storage layer, and a control gate electrode provided on the insulating film.
Abstract:
A semiconductor device includes a memory cell transistor including a first lower insulating film provided on a semiconductor substrate, a first intermediate insulating film provided on the first lower insulating film, a first upper insulating film provided on the first intermediate insulating film, and a first gate electrode provided on the first upper insulating film, and a select transistor including a second lower insulating film provided on the semiconductor substrate, a second intermediate insulating film provided on the second lower insulating film, a second upper insulating film provided on the second intermediate insulating film, and a second gate electrode provided on the second upper insulating film, wherein trap density of the second intermediate insulating film is lower than that of the first intermediate insulating film.
Abstract:
A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.
Abstract:
In one embodiment, a method of manufacturing a semiconductor device includes forming a conductive film whose upper surface and side surface are exposed and an insulation film whose upper surface is exposed, on a semiconductor substrate. The method further includes supplying oxidizing ions or nitriding ions contained in plasma generated by a microwave, a radio-frequency wave, or electron cyclotron resonance to the exposed side surface of the conductive film and the exposed upper surface of the insulation film, by applying a predetermined voltage to the semiconductor substrate, thereby performing anisotropic oxidation or anisotropic nitridation of the exposed side surface of the conductive film and the exposed upper surface of the insulation film.
Abstract:
According to an embodiment, there is provided a method of manufacturing a semiconductor device, including forming a nitride film by nitriding a surface of an underlying region having a semiconductor region containing silicon as a main component and an insulating region containing silicon and oxygen as a main component and adjacent to the semiconductor region, carrying out oxidation with respect to the nitride film to convert a portion of the nitride film which is formed on the insulating region into an oxide film and to leave a portion of the nitride film which is formed on the semiconductor region as at least part of a charge storage insulating film, forming a block insulating film on the charge storage insulating film, and forming a gate electrode film on the block insulating film.
Abstract:
A nonvolatile semiconductor memory device includes: a semiconductor member; a memory film provided on a surface of the semiconductor member and being capable of storing charge; and a plurality of control gate electrodes provided on the memory film, spaced from each other, and arranged along a direction parallel to the surface. Average dielectric constant of a material interposed between one of the control gate electrodes and a portion of the semiconductor member located immediately below the control gate electrode adjacent to the one control gate electrode is lower than average dielectric constant of a material interposed between the one control gate electrode and a portion of the semiconductor member located immediately below the one control gate electrode.
Abstract:
A semiconductor memory device includes a semiconductor substrate, an isolation insulation film filled in a plurality of trenches formed in the semiconductor substrate to define a plurality of element formation regions, a floating gate of polysilicon provided on each of the element formation regions through a first insulation film, a second insulation film, provided on the floating gate, containing a metal element, a control gate of polysilicon, provided on the second insulation film, and source/drain regions provided in the semiconductor substrate, both a polysilicon conductive layer containing a metal element and a mutual diffusion layer composed of a silicate layer of a mixed oxide material composed of a silicon element contained in the floating gate and the control gate and a metal element contained in the second insulation film are provided on a surface of each of the floating gate and the control gate, respectively.
Abstract:
According to an embodiment, there is provided a method of manufacturing a semiconductor device, including forming a nitride film by nitriding a surface of an underlying region having a semiconductor region containing silicon as a main component and an insulating region containing silicon and oxygen as a main component and adjacent to the semiconductor region, carrying out oxidation with respect to the nitride film to convert a portion of the nitride film which is formed on the insulating region into an oxide film and to leave a portion of the nitride film which is formed on the semiconductor region as at least part of a charge storage insulating film, forming a block insulating film on the charge storage insulating film, and forming a gate electrode film on the block insulating film.
Abstract:
A semiconductor integrated circuit device includes first, second gate electrodes, first, second diffusion layers, contact electrodes electrically connected to the first diffusion layers, a first insulating film which has concave portions between the first and second gate electrodes and does not contain nitrogen as a main component, a second insulating film which is formed on the first insulating film and does not contain nitrogen as a main component, and a third insulating film formed on the first diffusion layers, first gate electrodes, second diffusion layers and second gate electrodes with the second insulating film disposed therebetween in a partial region. The second insulating film is formed to fill the concave portions and a portion between the first and second gate electrodes has a multi-layered structure containing at least the first and second insulating films.