Abstract:
The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
Abstract:
A method includes method includes forming a dummy gate stack over a semiconductor substrate, wherein the semiconductor substrate is comprised in a wafer, removing the dummy gate stack to form a recess, forming a gate dielectric layer in the recess, and forming a metal layer in the recess and over the gate dielectric layer. The metal layer has an n-work function. A block layer is deposited over the metal layer using Atomic Layer Deposition (ALD). The remaining portion of the recess is filled with metallic materials, wherein the metallic materials are overlying the metal layer.
Abstract:
A thermal processing apparatus is provided in accordance with some embodiments. The thermal processing apparatus includes a heating source for transmitting incident radiation to a work piece having a circuit pattern formed on a front surface; a radiation sensor configured to receive light radiated from the front surface of the work piece; and a controller coupled to the radiation sensor, the controller being designed to control the heating source to reduce temperature variation of the work piece.
Abstract:
A method includes performing a first epitaxy to grow a first epitaxy layer of a first conductivity type, and performing a second epitaxy to grow a second epitaxy layer of a second conductivity type opposite the first conductivity type over the first epitaxy layer. The first and the second epitaxy layers form a diode. The method further includes forming a gate dielectric over the first epitaxy layer, forming a gate electrode over the gate dielectric, and implanting a top portion of the first epitaxy layer and the second epitaxy layer to form a source/drain region adjacent to the gate dielectric.
Abstract:
A device includes a substrate and a metal-oxide-semiconductor (MOS) device. The MOS device includes a gate dielectric over the substrate, a gate electrode over the gate dielectric, a source/drain region adjacent the gate dielectric, and a source/drain silicide over and contacting the source/drain region. The source/drain silicide comprises silicon, nickel, and a secondary metal. A ratio of a volume percentage of the secondary metal to a volume percentage of the silicon in the source/drain silicide is between about 0.005 and about 0.1. The secondary metal has a density between about 5,000 kg/m3 and about 15,000 kg/m3.
Abstract translation:一种器件包括衬底和金属氧化物半导体(MOS)器件。 MOS器件包括在衬底上的栅极电介质,在栅极电介质上方的栅极电极,与栅极电介质相邻的源极/漏极区域,以及源极/漏极硅化物,并与源极/漏极区域接触。 源极/漏极硅化物包括硅,镍和二次金属。 源极/漏极硅化物中二次金属的体积百分比与硅的体积百分比的比率在约0.005和约0.1之间。 二次金属具有约5,000kg / m 3至约15,000kg / m 3的密度。
Abstract:
A method includes performing a first epitaxy to grow a first epitaxy layer of a first conductivity type, and performing a second epitaxy to grow a second epitaxy layer of a second conductivity type opposite the first conductivity type over the first epitaxy layer. The first and the second epitaxy layers form a diode. The method further includes forming a gate dielectric over the first epitaxy layer, forming a gate electrode over the gate dielectric, and implanting a top portion of the first epitaxy layer and the second epitaxy layer to form a source/drain region adjacent to the gate dielectric.
Abstract:
An embodiment wafer polishing tool includes an abrasive tape, a polish head holding the abrasive tape, and a rotation module. The rotation module is configured to rotate a wafer during a wafer polishing process, and the polish head is configured to apply pressure to the abrasive tape toward a first surface of the wafer during the wafer polishing process.
Abstract:
In an embodiment, a device includes: a substrate; a first semiconductor region extending from the substrate, the first semiconductor region including silicon; a second semiconductor region on the first semiconductor region, the second semiconductor region including silicon germanium, edge portions of the second semiconductor region having a first germanium concentration, a center portion of the second semiconductor region having a second germanium concentration less than the first germanium concentration; a gate stack on the second semiconductor region; and source and drain regions in the second semiconductor region, the source and drain regions being adjacent the gate stack.
Abstract:
A method of forming a semiconductor structure includes following operations. A substrate including a silicon (Si) layer is received. An amorphous germanium (Ge) layer is formed on the Si layer. A barrier layer is formed over the amorphous Ge layer. The substrate is annealed to transform the Si layer and the Ge layer to form a single crystalline SiGe layer. A Ge concentration is in a positive correlation with a ratio of a thickness of the Ge layer and a thickness of the Si layer.
Abstract:
A method of operating a chemical mechanical planarization (CMP) tool includes attaching a polishing pad to a first surface of a platen of the CMP tool using a glue; removing the polishing pad from the platen, wherein after removing the polishing pad, residue portions of the glue remain on the first surface of the platen; identifying locations of the residue portions of the glue on the first surface of the platen using a fluorescent material; and removing the residue portions of the glue from the first surface of the platen.