Abstract:
A memory controller converts controller output signals output from a controller into memory input signals according to the operation specifications of memory chips to operate, and outputs the resultant to the memory chips through a common bus. The memory controller also receives memory output signals output from the memory chips through the common bus, and converts the received signals into controller input signals receivable to the controller. This allows the single memory controller to access the plurality of types of memory chips. As a result, the memory controller can be reduced in chip size, lowering the cost of the memory system.
Abstract:
Disclosed is a semiconductor device for outputting an output signal with a given phase held relative to an external clock despite a difference in characteristic, a change in temperature, and a fluctuation in supply voltage. The semiconductor device comprises an input circuit for inputting the external clock and outputting a reference signal, an output circuit for receiving an output timing signal and outputting an output signal according to the timing of the output timing signal, and an output timing control circuit for controlling the output timing so that the output signal exhibits a given phase relative to the external clock. The output timing control circuit includes a delay circuit for delaying the reference signal by a specified magnitude and generating an output timing signal, a phase comparison circuit for comparing the phase of the output timing signal with the phase of the reference signal, and a delay control circuit for specifying the magnitude of a delay to be produced by the delay circuit according to the result of comparison performed by the phase comparison circuit.
Abstract:
It is intended to provide a memory control device and memory control method capable of reducing charge/discharge current consumed while various commands are inputted to a semiconductor memory device and reducing occurrence of power noises. During periods TT1, TT2, and TT3 which are parts of a period tCKE in which a clock enable signal CKE is in active state, supply of a control clock SD_CLK from a memory control device 1 to a synchronous-type semiconductor memory device 12 can be stopped. Furthermore, in case an input of a data input/output period of an external command and that of refresh operation period of a refresh command RCMD overlap and an access region of the external command and that of the refresh command RCMD do not coincide, those commands are converted to control command signal SD_CMD in parallel, whereby parallel conversion processing operation can be conducted.
Abstract:
A semiconductor integrated circuit includes a switch unit for controlling the supply of a power source voltage to a signal amplification circuit for receiving an input signal, and a control unit for selectively turning ON and OFF the switch unit in accordance with the amplitude or frequency of the input signal. By the constitution, it is possible to provide an input circuit or an output circuit capable of being applied to an input/output interface adapted for a small amplitude operation.
Abstract:
A memory system having a simple configuration capable of high-speed data transmission is disclosed. Data is output from a controller or a memory in synchronism with a clock or a data strobe signal. The clock or the data strobe signal is transmitted by a clock signal line or a data strobe signal line, respectively, arranged in parallel to a data signal line. A delay circuit delays by a predetermined time the signals transmitted through the clock signal line or the data strobe signal line. The clock or the data strobe signal thus assumes a phase suitable for retrieval at the destination, so that the data signal can be retrieved directly by means of the received clock or the received data strobe signal.
Abstract:
A semiconductor memory device, which refreshes memory cells to retain data, has a first refresh mode and a second refresh mode. The first refresh mode is a mode for refreshing all of the memory cells, and the second refresh mode is a mode for refreshing a part of the memory cells. By refreshing only designated areas where data must be retained, power consumption in a refresh operation can be reduced, drastically cutting power consumption in a power-down mode.
Abstract:
A semiconductor memory device includes memory cells, word lines connected to the memory cells, bit lines connected to the memory cells, and a first circuit which resets the bit lines to a reset potential which is based on data read in a previous read cycle.
Abstract:
A system and a semiconductor device for realizing such a system are disclosed. The system uses at least a semiconductor device for retrieving an input signal in synchronism with an internal clock generated from an external clock, the input signal remaining effectively in synchronism with the external clock. Even in the case where a phase difference develops between a clock and a signal at the receiving end, or even in the case where a phase difference develops between a clock input circuit and other signal input circuits in the semiconductor device at the receiving end, data can be transferred at high speed. Each input circuit of the semiconductor device at the receiving end includes an input timing adjusting circuit for adjusting the phase of the clock applied to the input circuit in such a manner that the input circuit retrieves the input signal in an effective and stable state. In the case where the skew between the input signals is small as compared with the skew between the input signals and the clock, an input timing adjusting circuit is shared by a plurality of the input circuits.
Abstract:
A system and a semiconductor device for realizing such a system are disclosed. The system uses at least a semiconductor device for retrieving an input signal in synchronism with an internal clock generated from an external clock, the input signal remaining effectively in synchronism with the external clock. Even in the case where a phase difference develops between a clock and a signal at the receiving end, or even in the case where a phase difference develops between a clock input circuit and other signal input circuits in the semiconductor device at the receiving end, data can be transferred at high speed. Each input circuit of the semiconductor device at the receiving end includes an input timing adjusting circuit for adjusting the phase of the clock applied to the input circuit in such a manner that the input circuit retrieves the input signal in an effective and stable state. In the case where the skew between the input signals is small as compared with the skew between the input signals and the clock, an input timing adjusting circuit is shared by a plurality of the input circuits.
Abstract:
A DRAM (Dynamic Random Access Memory) having a plurality of memory cells includes a data read/write circuit reading or writing data for the memory cells, a self-refresh circuit refreshing data stored in the memory cells, and a power supply unit for supplying electric power to the data read/write circuit and the self-refresh circuit, the electric power having a first voltage level in a normal operation mode and a second voltage level in a self-refresh mode, wherein the second voltage level is lower than the first voltage level.