Abstract:
A scanning electron microscope has an electron gun producing the electron beam, an objective lens for sharply focusing the beam onto the specimen, a tilting mechanism for tilting the specimen relative to the beam, and a power supply for applying the negative voltage to the specimen. This microscope further includes a cylindrical shield electrode mounted to surround the electron beam path between the objective lens and specimen. A front-end electrode is insulatively mounted to the front-end portion of the shield electrode that is on the specimen side. An electric potential substantially identical to the electric potential at the polepieces of the objective lens is applied to the shield electrode. An electric potential substantially identical to the potential at the specimen is applied to the front-end electrode.
Abstract:
A conical shaped baffle aperture reduces beam position drift due to electrostatic charging of insulating contamination layers on beam tube walls of a charged particle beam system. The geometric cone angle, aperture size and apex location of the baffle with respect to the source of contamination and secondary radiation are selected so that the inner walls of the baffle and the beam itself are invisible from the source, and therefore remain free of the insulating contamination layers that would otherwise cause charging drift.
Abstract:
A plasma ion implantation apparatus includes a vacuum chamber that receives the object within its walls. The object is supported upon an electrically conductive base that is electrically isolated from the wall of the vacuum chamber. An electrically conductive enclosure is positioned between the object and the wall of the vacuum chamber and supported upon the base. The enclosure is made of an electrically conductive material. A plasma source is positioned so as to create a plasma in the vicinity of the object to be implanted. A voltage source applies an electrical voltage to the base and thence the enclosure relative to the wall of the vacuum chamber. Secondary electrons emitted from the object during implantation are reflected back into the plasma by the enclosure, reducing X-ray production and improving plasma efficiency.
Abstract:
In one embodiment, a blanking aperture array system includes a blanking aperture array substrate including a plurality of beam passage holes through which beams in a multi charged particle beam pass and being provided with blankers to perform blanking deflection on the beams, and an X-ray shield disposed upstream of the blanking aperture array substrate. A cell section including the beam passage holes and the blankers is provided in a central portion of the blanking aperture array substrate, and a circuit section applying a voltage to each of the blankers is disposed in a periphery of the cell section. The circuit section is disposed such that a shortest distance between the circuit section and an outermost peripheral beam passage hole of the plurality of beam passage holes is greater than or equal to a distance based on an electron range in the blanking aperture array substrate.
Abstract:
A specimen machining device for machining a specimen by irradiating the specimen with an ion beam includes an ion source for irradiating the specimen with the ion beam, a specimen stage for holding the specimen, a camera for photographing the specimen, an information provision unit for providing information indicating an expected machining completion time, and a storage unit for storing past machining information. The information provision unit performs processing for calculating the expected machining completion time based on the past machining information, processing for acquiring an image photographed by the camera, processing for calculating a machining speed based on the acquired image, and processing for updating the expected machining completion time based on the machining speed.
Abstract:
A plasma processing apparatus generating plasma by electromagnetic waves supplied into a processing container to process a substrate, includes an upper electrode disposed in an upper portion of the processing container, a power supply member connected to the upper electrode to supply electromagnetic waves to the upper electrode, a first shield member and a second shield member configured to electrically shield the upper electrode and the power supply member, a ring-shaped insulating member provided between the upper electrode and the first shield member and between the upper electrode and the second shield member, and having a plurality of gas through-holes penetrating inside thereof, and a conductive member covering a first end of the insulating member and electrically interconnecting the first shield member and the second shield member. The power supply member passes through an inner space in the insulating member and supplies electromagnetic waves to the upper electrode.
Abstract:
According to an embodiment of the present invention, an apparatus for processing substrate comprising: a susceptor; and a cover unit installed on an upper part of the susceptor, the substrate is placed on the cover unit, wherein the cover unit comprises: a cover frame having one or more air gaps; and one or more covers having a shape corresponding to each of the air gaps and mountable in each of the air gaps, wherein a depth of the air gap is at least three times the thickness of the substrate.
Abstract:
A detector substrate (or detector array) for use in a charged particle multi-beam assessment tool to detect charged particles from a sample. The detector substrate defines an array of apertures for beam paths of respective charged particle beams of a multi-beam. The detector substrate includes a sensor unit array. A sensor unit of the sensor unit array is adjacent to a corresponding aperture of the aperture array. The sensor unit is configured to capture charged particles from the sample. The detector array may include an amplification circuit associated with each sensor unit in the sensor unit array and proximate to the corresponding aperture in the aperture array. The amplification circuit may include a Trans Impedance Amplifier and/or an analogue to digital converter.
Abstract:
The present invention relates to a scanning electron microscope realized to observe a test sample by detecting back-scattered electrons scattered and emitted from a surface of the test sample in the air without a vacuum chamber which is allowed to observe the test sample in a vacuum state the scanning electron microscope can be useful in minimizing dispersion of electrons of the electron beam passing through the shielding film caused due to electron scattering by focusing the electron beam passing through the shielding film on a top surface of the first back-scattered electron detector disposed between the electron gun and the shielding film to pass an electron beam and configured to detect back-scattered electrons scattered from the test sample since the first back-scattered electron detector is provided with the first planar coil having a magnetic field formed thereon.
Abstract:
The invention relates to a charged particle beam generator. The generator may comprise a high voltage shielding arrangement (201) for shielding components outside the shielding arrangement from high voltages within the shielding arrangement, and a vacuum pump (220) located outside the shielding arrangement for regulating a pressure of a space within the shielding arrangement. The generator may comprise a collimator system with a cooling arrangement (405a/407a-407b/405b) comprising cooling channels inside electrodes of the collimator system.