Abstract:
A capillary cell is described along with an arrangement and a method for receiving, positioning and examining a microscopic specimen, in particular a cleared fluorescent specimen with the help of a single-plane fluorescence microscope. The capillary cell is suitable for being positioned in a chamber volume and contains a capillary section, which comprises a wall. The wall encloses a specimen volume and is planar and transparent in at least some sections. In addition, the capillary cell includes an upper and a lower closure section, which are connected to the capillary section and which seal the capillary section. The specimen volume is separated from the chamber volume by the capillary section, the upper closure section and the lower closure section.
Abstract:
Systems and methods for detecting and/or identifying target cells (e.g., bacteria) using engineered transduction particles are described herein. In some embodiments, a method includes mixing a quantity of transduction particles within a sample. The transduction particles are associated with a target cell. The transduction particles are non-replicative, and are engineered to include a nucleic acid molecule formulated to cause the target cell to produce a series of reporter molecules. The sample and the transduction particles are maintained to express the series of the reporter molecules when target cell is present in the sample. A signal associated with a quantity of the reporter molecules is received. In some embodiments, a magnitude of the signal is independent from a quantity of the transduction particle above a predetermined quantity.
Abstract:
An arrangement for the spectrometric measurement of products, such as cereals, oleaginous products, or derived products, includes a mechanism for selective adjustment of the position of a light beam in vertical and horizontal planes, and a selective adjustment device for ensuring that rays of the light beam are parallel.
Abstract:
An observation device (1) is provided with: a general observation unit (10) for observing sample cells by observing an entire container (C) containing the cells and a culture solution; and a magnification observation unit (20) for magnifying a region within the container (C) and observing the cells, the general observation unit (10) and the magnification observation unit (20) each individually having lighting for illuminating the cells with light, and an optical system for observing the cells. The general observation unit (10) and the magnification observation unit (20) are thereby each provided with an individual optical system and lighting, making it possible to configure an appropriate observation unit for use both when the cells are observed by observing the entire container (C) and when a part within the container (C) is magnified and the cells are observed.
Abstract:
This disclosure is directed to exemplary embodiments of systems, methods, techniques, processes, products and product components that can facilitate users making improved absorbance or fluorescence measurements in the field of spectroscopy with reduced (minimal) sample waste, and increased throughput, particularly in the study of biological sciences. A measuring system is provided having: a base unit with a means for locating a pipette tip; a pipette tip designed to interact with the base unit for purposes of accurate pipette tip positioning; at least one light supplying unit positioned to supply light to a liquid sample in the pipette tip and at least one light collecting unit positioned to collect light from a liquid sample in the pipette tip.
Abstract:
An apparatus for receiving an analyte comprises two opposing housings that clamp onto a substrate. One of the housings includes passageways that deliver the analyte and optical signals to the substrate. Another one of the housings includes passageways that allow optical signals, which have passed through the substrate, to travel to photometric sensors which may be used to study the analyte or its effects. The apparatus may include a light guide that uniformly distributes light from a plurality of point emitters to multiple areas of the substrate. The apparatus may include an actuator assembly that opens and closes the two housing to allow for installation and removal of the substrate. The substrate may be carried in a cartridge that is removable from the two housings.
Abstract:
A method for regulating the relative position of an analyte of a sample (16) in relation to a light beam (F) includes the illumination of the analyte of the sample (16) with the light beam (F), capturing by an imaging device (38) a transmission image of the beams scattered by the analyte of the sample (16) in order to establish a diffraction pattern, and modifying the relative position of the analyte of the sample (16) in relation to the light beam (F) according to at least one property of the diffraction pattern.
Abstract:
The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
Abstract:
A cuvette supplying device is disclosed. The cuvette supplying device comprises: a cuvette storage for storing cuvettes; a carrier, provided inside the cuvette storage, for carrying the cuvettes in the cuvette storage outside the cuvette storage; a conveyor for conveying the cuvettes existing at the bottom of the cuvette storage towards the carrier; and an arranging section for arranging the cuvettes carried outside the cuvette storage by the carrier at a predetermined position. The specimen analyzer comprising the cuvette supplying device is also disclosed.
Abstract:
A microscope system including: a storage unit storing two or more sheets of slide glasses to be subjected to a predetermined treatment; a stage holding only one sheet of slide glass to be subjected to the treatment; a supply arm by which one sheet of slide glass to be subjected to the treatment is picked up from the storage unit and supplied onto the stage; a discharge arm by which the slide glass mounted on the stage is picked up and discharged in the storage unit; a moving unit operable to move the supply arm and the discharge arm in an integral manner so as to bring the supply arm or the discharge arm into proximity to each of the storage unit and the stage; and a control unit operable to control the supply arm, the discharge arm and the moving unit.