Abstract:
A gas sampling assembly comprising an insert and a cuvette, and an insert for use in a cuvette, suitable for sampling respiratory gases of paediatric patients, the insert comprising a unitary insert having a hub and at least two extending members extending outwardly from the hub, the at least two extending members defining a void therebetween and the insert being located, in use, at least partially within the sampling channel, and the gas sampling cell assembly being configured such that light passing through the optical window passes into the sampling channel and through the void between the two extending members.
Abstract:
A measuring vessel in which a gas to be analyzed by spectrometry is intended to flow, the vessel being in the form of a hollow tube provided with a reflective material forming an optical-reflection layer, including a hollow tube is produced from a non-metallic material, and a removable supple optical article is applied against the internal surface of the hollow tube, the article including a supple flexible support, one face of the support being covered with a reflective metal material, the article being inserted in the tube so that the reflective metal material forms the optical-reflection layer.
Abstract:
Disposable, pre-sterilized, and pre-calibrated, pre-validated sensor components are provided. The sensor components interact with a sensor system having disposable fluid conduit or bioreactor bag and a reusable sensor assembly. The components can include an optical bench or inset optical component or module designed to be integrated within the disposable fluid conduit or bioreactor bag, which provides an optical light path through the conduit or bag. The sensors systems are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the disposable fluid conduit or bag and on the reusable sensor assembly. Methods for calibrating the sensor and for determining a target property of an unknown fluid are also disclosed. The devices, systems and methods relating to the sensor are suitable for and can be outfitted for turbidity sensing.
Abstract:
A method of referencing in optical absorption spectroscopy using broadband light sources for determining the concentration of substances in gaseous or fluid media through and to a device for measuring the concentration of substances in gaseous or fluid media within the measurement path of a measurement cell using absorption spectroscopy of light emitted from broadband light sources via light guiding optics.
Abstract:
An optical element includes a main body formed of a light transmissive material and including an arc-shaped optical path, and a gap formed on the arc-shaped optical path in the main body. The gap may have a notch shape. The main body may have a semicircular plate shape. The main body may have a hemispherical shape.
Abstract:
Inline optical sensor which includes a modular flowcell block with a flow passageway of predetermined diameter, interchangeable adapters for connecting flow lines with different internal diameters to the block, and an optical pathlength that can be adjusted both in fixed increments with window spacers and continuously with vernier adjusters, and a light source and an optical detector in modular housings which can be aligned both radially and axially. Thermal isolation is provided between the housings and the flowcell body, and air circulation further reduces temperature and condensation within the housings.
Abstract:
A biological fluid sample analysis chamber and a method for analyzing a biological fluid sample is provided. The chamber includes a first chamber panel, a second chamber panel, and a plurality of beads disposed between the first chamber panel and the second chamber panel, which beads are configured to not reflect light incident to the beads in an amount that appreciably interferes with a photometric analysis of the biologic fluid.
Abstract:
Disposable, pre-sterilized, and pre-calibrated, pre-validated sensors are provided. The sensor comprises a disposable fluid conduit or reactor bag and a reusable sensor assembly. An optical bench or inset optical component is integrated within the disposable fluid conduit or bioreactor bag, which provides an optical light path through the conduit or bag. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the disposable fluid conduit or bag and on the reusable sensor assembly. Methods for calibrating the sensor and for determining a target property of an unknown fluid are also disclosed. The devices, systems and methods relating to the sensor are suitable for and can be outfitted for turbidity sensing.
Abstract:
A concentration measuring device for determining a concentration of gas or particles in a measurement volume includes at least one housing having an opening for communication with the measurement volume, a light source for transmitting measurement light through the housing into the measurement volume, a light receiver for receiving the measurement light after its passage through the measurement volume and an evaluation unit which is designed for determining the concentration of gas or particles from the measurement light received at the light receiver. In accordance with the invention at least one body of solid material is arranged in the at least one housing such that the measurement light path largely passes through the at least one solid body within the housing, with the portion of the measurement light path within the at least one housing not passing through the at least one solid body having a specified total length.
Abstract:
An optical apparatus and method comprising a light source, an array detector for area imaging and an optical cell assembly. The optical cell assembly comprises a chamber which is arranged to receive a sample of a material including an analyte, a fluid inlet and a fluid outlet coupled to the chamber. A fluid dissolution medium stream passes through the chamber such that the sample can dissolve into the dissolution medium. The chamber is in at least one light path created between the light source and the array detector. The array detector comprises a two dimensional array of detector locations arranged to provide an output signal indicative of the light absorbance of the analyte within the chamber such that the output of the array detector is indicative of the concentration profile of the analyte near the surface of the sample.