Abstract:
A method of Light Detection and Ranging (LIDAR) includes generating a first optical pulse that propagates towards a target and receiving an optical return signal reflected from the target resulting from the generated first optical pulse. The optical return signal is processed to determine a number of additional optical pulses desired to be propagated towards the target to meet a performance criteria. The determined number of additional optical pulses is then generated and propagated towards the target. The additional optical return signals reflected from the target are received and processed to obtain one or more LIDAR measurements.
Abstract:
An image sensor assembly includes at least one upconverter configured to detect light in a NIR waveband that is received from an object to be imaged and generate, based on the detected light, upconverted light that is outside of the NIR waveband; and at least one image sensor configured to detect the upconverted light.
Abstract:
A new technique for sensing optical cavity mode mismatch using a mode converter formed from a cylindrical lens mode converting telescope, radio frequency quadrant photodiodes (RFQPDs), and a heterodyne detection scheme. The telescope allows the conversion of the Laguerre-Gauss basis to the Hermite-Gauss (HG) basis, which can be measured with quadrant photodiodes. Conversion to the HG basis is performed optically, measurement of mode mismatched signals is performed with the RFQPDs, and a feedback error signal is obtained with heterodyne detection.
Abstract:
An apparatus comprising at least one pair of first and second photodetectors, each photodetector of the photodetector pair comprising a channel member, respective source and drain electrodes configured to enable a flow of electrical current 5 through the channel member between the source and drain electrodes, and a plurality of quantum dots configured to generate electron-hole pairs on exposure to incident electromagnetic radiation to produce a detectable change in the electrical current flowing through the channel member, wherein the apparatus is configured such that the first and second photodetectors 10 of the photodetector pair generate electron-hole pairs which produce an increase and decrease in electrical current through the channel members respectively, the combined change in electrical current of the pair of first and second photodetectors being indicative of one or more of the presence and magnitude of the incident electromagnetic radiation.
Abstract:
A nanowire composite structure is provided. The nanowire composite structure includes a nanowire core, wherein a material of the nanowire core includes Se, Te or a combination thereof. The nanowire composite structure also includes a metal layer covering the nanowire core. A method for forming the nanowire composite structure, a protective structure of a nanowire, a sensing device, and a method for forming a sensing device are also provided.
Abstract:
The instant disclosure provides spectrophotometric methods for assessing histological stains used in a histology analyzer. The methods find use in various assessments including determinations of the identity of a histological stain, determinations of the quality of a histological stain, etc. Also included are devices and systems for practicing the described methods. The instant disclosure also provides computer readable media containing libraries of reference spectrophotometric characteristics of histological stains useful in assessing a histological stain used in a histology analyzer. Also provided is computer readable media containing instructions that cause a computing device to perform steps for making an assessment of a histological stain.
Abstract:
A device for testing a lighting device including a plurality of light emitting diodes (LEDs) and an LED driver configured to drive the plurality of LEDs to emit light includes a camera configured to image a surface on which light output by the LED lighting device is incident, and generate image data corresponding to an output of the LED lighting device; and a controller configured to compare the image data with a reference condition, and in response to the output of the LED lighting device deviating from the reference condition, control the LED driver to modify brightness of at least a portion of the plurality of LEDs.
Abstract:
Biometric monitoring devices, including various technologies that may be implemented in such devices, are discussed herein. Additionally, techniques for utilizing altimeters in biometric monitoring devices are provided. Such techniques may, in some implementations, involve recalibrating a biometric monitoring device altimeter based on location data; using altimeter data as an aid to gesture recognition; and/or using altimeter data to manage an airplane mode of a biometric monitoring device.
Abstract:
Disclosed is test structure for measuring wave-front aberration of an extreme ultraviolet (EUV) inspection system. The test structure includes a substrate formed from a material having substantially no reflectivity for EUV light and a multilayer (ML) stack portion, such as a pillar, formed on the substrate and comprising a plurality of alternating pairs of layers having different refractive indexes so as to reflect EUV light. The pairs have a count equal to or less than 15.
Abstract:
A photoelectric cell comprising: a cathode layer configured to eject electrons in response to receiving photons from a light source; a substantially-photon-transparent anode configured to receive the ejected electrons; first and second, substantially-photon-transparent, dielectric layers, wherein the first dielectric layer is disposed between the cathode layer and the anode layer and wherein the anode layer is disposed between the first and second dielectric layers such that the cathode layer, the first dielectric layer, the anode layer, and the second dielectric layer form a layered stack; and wherein at least a first portion of the layered stack overlaps a second portion of the layered stack.