Abstract:
A layered chip package includes a main body, and wiring disposed on a side surface of the main body. The main body includes: a main part including a plurality of layer portions stacked; a plurality of first terminals disposed on the top surface of the main part and connected to the wiring; and a plurality of second terminals disposed on the bottom surface of the main part and connected to the wiring. The plurality of layer portions include a first-type layer portion and a second-type layer portion. The first-type layer portion includes a conforming semiconductor chip, and a plurality of first-type electrodes that are connected to the semiconductor chip and the wiring. The second-type layer portion includes a defective semiconductor chip, and a plurality of second-type electrodes that are connected to the wiring and not to the semiconductor chip.
Abstract:
The present invention provides systems and methods for assembling an electronic assembly using an anisotropic conducting membrane (ACM) as a component interconnect and a substrate embossed with placement cavities or a positional fixture to facilitate component placement on the substrate in the electronic assembly. The fixture may comprise multiple layers of interconnects to improve routing density for the electronic assembly enclosed in a housing. An alignment chain may be used to monitor positional and contact integrity of the ACM interfaced components in a complex assembly. The systems and methods allow components to be detached for reuse. Interconnection elements or conduction pathways at the components can be used to interconnect a plurality of neighboring substrates over the ACM layers into a stacked electronic assembly.
Abstract:
Provided is a bonding apparatus. The bonding apparatus includes a first stage on which a display panel including a first mark is disposed, a pressing part disposed above the first stage and configured to provide a data driver including a second mark on the display panel, and an alignment camera disposed below the first stage. When the data driver is provided on the display panel such that the data driver and the display panel are connected to each other, the alignment camera is configured to capture images of the first mark and the second mark at a same temporal instance.
Abstract:
The present application discloses a semiconductor device with integrated decoupling alignment features. The semiconductor device includes a first wafer comprising a first substrate having a dielectric stack, a decoupling feature positioned in the dielectric stack under one of the plurality of first alignment marks, a plurality of first alignment marks positioned on the first substrate and parallel to each other; and a second wafer positioned on the first wafer and comprising a plurality of second alignment marks positioned above the plurality of first alignment marks. The plurality of second alignment marks are arranged parallel to the plurality of first alignment marks and adjacent to the plurality of first alignment marks in a top-view perspective. The plurality of first alignment marks and the plurality of second alignment marks comprise a fluorescence material. The decoupling feature has a is bottle-shaped cross-sectional profile, and the decoupling feature comprises a porous low-k material.
Abstract:
An alignment mark at a position that overlaps an area in which an anisotropic conductive film is pasted, and to accurately perform alignment using an image captured by a camera. An alignment method in which an electronic component is mounted on the obverse surface of a transparent substrate with a conductive adhesive agent interposed therebetween, a substrate-side alignment mark and a component-side alignment mark are adjusted from the captured image, and the position at which the electronic component is mounted on the transparent substrate is aligned, wherein in the conductive adhesive agent, conductive particles are in a regular arrangement as viewed from a planar perspective, and in the captured image, the outside edges of the alignment marks exposed between the conductive particles are intermittently visible as line segments (S) along the imaginary line segments of the outside edges of the alignment mark.
Abstract:
A first insulating film is applied onto a joining face of a semiconductor device including a connection terminal on a joining face, and the connection terminal is embedded inside the first insulating film. The second insulating film is formed on a joining target face of a joining target, which includes a connection target terminal on the joining target face, and the connection target terminal is embedded inside the second insulating film. The semiconductor device and the joining target are joined together by applying pressure and causing the semiconductor device and the joining target to make contact with each other.
Abstract:
Even in case of conductive particles being clamped between stepped sections of substrate electrodes and electrode terminals, conductive particles sandwiched between each main surface of the substrate electrodes and electrode terminals are sufficiently compressed, ensuring electrical conduction. An electronic component is connected to a circuit substrate via an anisotropic conductive adhesive agent, on respective edge-side areas of substrate electrodes of the circuit substrate and electrode terminals of the electronic component, stepped sections are formed and abutted, conductive particles are sandwiched between each main surface and stepped sections of the substrate electrodes and electrode terminals; the conductive particles and stepped sections satisfy formula, a+b+c≦0.8 D (1), wherein a is height of the stepped section of the electrode terminals, b is height of the stepped section of the substrate electrodes, c is gap distance between each stepped sections and D is diameter of conductive particles.
Abstract:
A laminated chip includes: semiconductor chips that are laminated; and multiple types of adhesive insulating resin films that include mutually different characteristics and that are filled between the semiconductor chips, wherein the multiple types of the adhesive insulating resin films are arranged in a chip plane direction, depending on a demand characteristic for each region in a chip plane.
Abstract:
An alignment mark at a position that overlaps an area in which an anisotropic conductive film is pasted, and to accurately perform alignment using an image captured by a camera. An alignment method in which an electronic component is mounted on the obverse surface of a transparent substrate with a conductive adhesive agent interposed therebetween, a substrate-side alignment mark and a component-side alignment mark are adjusted from the captured image, and the position at which the electronic component is mounted on the transparent substrate is aligned, wherein in the conductive adhesive agent, conductive particles are in a regular arrangement as viewed from a planar perspective, and in the captured image, the outside edges of the alignment marks exposed between the conductive particles are intermittently visible as line segments (S) along the imaginary line segments of the outside edges of the alignment mark.
Abstract:
Even in case of conductive particles being clamped between stepped sections of substrate electrodes and electrode terminals, conductive particles sandwiched between each main surface of the substrate electrodes and electrode terminals are sufficiently compressed, ensuring electrical conduction. An electronic component is connected to a circuit substrate via an anisotropic conductive adhesive agent, on respective edge-side areas of substrate electrodes of the circuit substrate and electrode terminals of the electronic component, stepped sections are formed and abutted, conductive particles are sandwiched between each main surface and stepped sections of the substrate electrodes and electrode terminals; the conductive particles and stepped sections satisfy formula, a+b+c≦0.8 D (1), wherein a is height of the stepped section of the electrode terminals, b is height of the stepped section of the substrate electrodes, c is gap distance between each stepped sections and D is diameter of conductive particles.
Abstract translation:即使在基板电极和电极端子的台阶部之间夹着导电粒子的情况下,夹在基板电极的每个主表面和电极端子之间的导电颗粒被充分地压缩,从而确保导电。 电子部件通过各向异性导电粘合剂在电路基板的基板电极的各个边缘侧区域和电子部件的电极端子上连接到电路基板,台阶部形成并抵接,导电粒子夹在每个 基板电极和电极端子的主表面和阶梯部分; 导电粒子和阶梯部分满足公式a + b +c≤0.8D(1)其中a是电极端子的阶梯部分的高度,b是基板电极的阶梯部分的高度,c是间隙距离 在每个阶梯部分之间,D是导电颗粒的直径。