Abstract:
Provided is an image type electron spin polarimeter. It at least comprises a scattering target, a two-dimensional electron detector and an electron bending unit, wherein the electron bending unit is used for bending the orbit of the incident (scattered) electrons to a first (second) angle to arrive the scattering target (two-dimensional electron detector) with an optimal incident angle, and to transfer the image of the electron intensities from the entrance plane (scattering target) to the scattering target (two-dimensional electron detector) with small aberrations, and to separate the orbits of incident and scattered electrons to increase the degree of freedom of the geometric configuration of each component of the spin polarimeter. At least one of the first and second angles is not 0°, thereby achieving the first transfer of the two-dimensional image of electron intensities on the entrance plane to the scattering target and the second transfer from scattering target to the two-dimensional electron detector respectively with small aberrations, and then achieving multichannel measurements of the electron spin.
Abstract:
A method of lithography including providing a first mirror array and a second mirror array of a digital pattern generator (DPG); the second mirror array is offset from the first mirror array in a first direction. A first data piece and a second data piece associated with an IC device, are received by the DPG. The first and second data piece each defines a state of a pixel of the DPG. The first data piece is provided to a first pixel of the DPG. The second data piece is also provided to the first pixel of the DPG. A first point on a photosensitive layer on a target substrate is exposed. The first point is defined by the first data piece and the second data piece. The target substrate moved in a second direction, perpendicular to the first direction to expose a second point.
Abstract:
When a signal electron is detected by energy selection by combining and controlling retarding and boosting for observation of a deep hole, etc., the only way for focus adjustment is to use a change in magnetic field of an objective lens. However, since responsiveness of the change in magnetic field is poor, throughput reduces. A charged particle beam device includes: an electron source configured to generate a primary electron beam; an objective lens configured to focus the primary electron beam; a deflector configured to deflect the primary electron beam; a detector configured to detect a secondary electron or a reflection electron generated from a sample by irradiation of the primary electron beam; an electrode having a hole through which the primary electron beam passes; a voltage control power supply configured to apply a negative voltage to the electrode; and a retarding voltage control power supply configured to generate an electric field, which decelerates the primary electron beam, on the sample by applying the negative voltage to the sample, wherein the charged particle beam device performs focus adjustment while an offset between the voltage applied to the electrode and the voltage applied to the sample is being kept constant.
Abstract:
The electromagnet support frame is for supporting an electromagnet having a trunnion pair which comprises two trunnions that are formed on mutually opposite side-faces of the electromagnet and whose central axes are matched to each other, and is characterized by including support fixtures whose number is the same as that of the trunnions and in which engaging parts are formed that are engaged with the trunnions so as to cover outer faces thereof, and a mounting frame that holds the support fixtures through vertical adjustment parts that move the fixtures in a vertical direction.
Abstract:
A system for adaptive electron beam scanning may include an inspection sub-system configured to scan an electron beam across the surface of a sample. The inspection sub-system may include an electron beam source, a sample stage, a set of electron-optic elements, a detector assembly and a controller communicatively coupled to one or more portions of the inspection sub-system. The controller may assess one or more characteristics of one or more portions of an area of the sample for inspection and, responsive to the assessed one or more characteristics, adjust one or more scan parameters of the inspection sub-system.
Abstract:
An ion beam manipulator including a suppression electrode, a ground electrode connected to the suppression electrode in a parallel, spaced-apart relationship therewith by three electrically insulating connectors, the connectors being spaced 120 degrees apart from one another around a circumference of the suppression electrode and the ground electrode, a plurality of linkages extending from the electrically insulating connectors, at least one of the linkages including a pair of parallel support arms connected at a first end to a corresponding one of the electrically insulating connecters by a first pair of universal joints and connected at a second end to a bracket by a second pair of universal joints, and a drive shaft extending from the bracket, the drive shaft coupled to an actuator configured to extend and retract the drive shaft along a longitudinal axis of the drive shaft.
Abstract:
An objective of the present invention is to provide a charged particle beam device with which information based on a charged particle which is discharged from a bottom part of high-aspect structure is revealed more than with previous technology. To achieve the objective, proposed is a charged particle beam device comprising: a first orthogonal electromagnetic field generator which deflects charged particles which are discharged from a material; a second orthogonal electromagnetic field generator which further deflects the charged particles which are deflected by the first orthogonal electromagnetic field generator; an aperture forming member having a charged particle beam pass-through aperture; and a third orthogonal electromagnetic field generator which deflects the charged particles which have passed through the aperture forming member.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.
Abstract:
A method of lithography including providing a first mirror array and a second mirror array of a digital pattern generator (DPG); the second mirror array is offset from the first mirror array in a first direction. A first data piece and a second data piece associated with an IC device, are received by the DPG. The first and second data piece each defines a state of a pixel of the DPG. The first data piece is provided to a first pixel of the DPG. The second data piece is also provided to the first pixel of the DPG. A first point on a photosensitive layer on a target substrate is exposed. The first point is defined by the first data piece and the second data piece. The target substrate moved in a second direction, perpendicular to the first direction to expose a second point.
Abstract:
An apparatus, method and products thereof provide an accelerated neutral beam derived from an accelerated gas cluster ion beam for processing materials.