Abstract:
An electron microscope which utilizes a polarized electron beam and can obtain a high contrast image of a sample is provided. The microscope includes: a laser; a polarization apparatus that polarizes a laser beam into a circularly polarized laser beam; a semiconductor photocathode that is provided with a strained superlattice semiconductor layer and generates a polarized electron beam when irradiated with the circularly polarized laser beam; a transmission electron microscope that utilizes the polarized electron beam; an electron beam intensity distribution recording apparatus arranged at a face reached by the polarized electron beam that has transmitted through the sample. An electron beam intensity distribution recording apparatus records an intensity distribution before and after the polarization of the electron beam is reversed, and a difference acquisition apparatus calculates a difference therebetween.
Abstract:
A system and method for using electron beams with engineered phase dislocations as scanned probes in electron probe beam instruments such as scanning transmission electron microscopes. These types of electron beams have unique properties and can provide better information about a specimen than conventional electron beams. Phase dislocations may be created based on a pattern disposed on a nanoscale hologram, which may be placed in the electron optical column of the electron probe beam instrument. When an electron beam from the instrument is directed onto the hologram, phase dislocations may be imprinted onto the electron beam when electrons are diffracted from these holograms. For example, electron probe beams with spiral phase dislocations may occur. These spiral phase dislocations are formed using a hologram with a fork-patterned grating. Spiral phase dislocations may be used to provide magnetic contrast images of a specimen.
Abstract:
A fine atomic clock includes a particle source, an MW filter, an atomic gun, a Magneto-MW Trap (MMT) unit, an energy injection unit, and a probing unit. The particle source emits particles. The MW filter receives the particles and generates a plurality of coherent MW of particle beams. The particle beams forms a virtual space-time lattice in an enclosed space. The atomic gun emits a sample. The MMT unit utilizes a magnetic field to trap the sample in the virtual space-time lattice, and utilizes the particle beams to cool down the sample. The sample corresponds to fermions or molecules. The energy injection unit injects energy into the sample to activate the sample into an excitation state. The probing unit activates emission of the sample. An emission frequency of the sample corresponds to a characteristic emission frequency of the sample, and the emission frequency generates a standard time signal.
Abstract:
An electron microscope which utilizes a polarized electron beam and can obtain a high contrast image of a sample is provided. The microscope includes: a laser; a polarization apparatus that polarizes a laser beam into a circularly polarized laser beam; a semiconductor photocathode that is provided with a strained superlattice semiconductor layer and generates a polarized electron beam when irradiated with the circularly polarized laser beam; a transmission electron microscope that utilizes the polarized electron beam; an electron beam intensity distribution recording apparatus arranged at a face reached by the polarized electron beam that has transmitted through the sample. An electron beam intensity distribution recording apparatus records an intensity distribution before and after the polarization of the electron beam is reversed, and a difference acquisition apparatus calculates a difference therebetween.
Abstract:
An electron beam source includes a base and a tip fixed to the base and extending from the base. The tip includes a core and a coating applied to the core. The core has a surface that includes a first material. The coating includes a second material which is different from the first material. The second material forms a surface of the tip, and the second coating includes more than 30% by weight of a lanthanide element.
Abstract:
Chirality distribution in the molecular structure of protein or the like and magnetic domain structure are analyzed with high resolution less than 10 nm. A transmission electron microscope equipped with a spin-polarized electron source is used for holography observation. The phase of transmission spin-polarized electrons changes due to the existence of chirality structure or magnetization in a sample, which is observed as an interference pattern phase shift in holography measurement.
Abstract:
A non-contact angle measuring apparatus includes a matter-wave and energy (MWE) particle source and a detector. The MWE particle source is used for generating boson or fermion particles. The detector is used for detecting a plurality peaks or valleys of an interference pattern generated by 1) the boson or fermion particles corresponding to a slit, a bump, or a hole of a first plane and 2) matter waves' wavefront-split associated with the boson or fermion particles reflected by a second plane, wherein angular locations of the plurality peaks or valleys of the interference pattern, a first distance between a joint region of the first plane and the second plane, and a second distance between the detector and the slit are used for deciding an angle between the first plane and the second plane.
Abstract:
An electron beam source includes a base and a tip fixed to the base and extending from the base. The tip includes a core and a coating applied to the core. The core has a surface that includes a first material. The coating includes a second material which is different from the first material. The second material forms a surface of the tip, and the second coating includes more than 30% by weight of a lanthanide element.
Abstract:
A spin polarized ion beam generation apparatus (30) can efficiently generate a spin polarized ion by using a pumping light generator (33) to an ion in a high frequency discharge tube (15) to irradiate optical pumping (33,34) by circularly polarized light and linearly polarized light orthogonal to each other to a metastable atom. For example, a polarized helium ion beam having a spin polarization rate that exceeds 18% and that is as high as 25% can be generated. The spin polarized ion beam generation apparatus (30) also can be applied to a processing apparatus and an analysis apparatus that can irradiate a polarized ion beam to a specimen. According to the spin polarized ion scattering spectroscopy apparatus, the spin status in a region at a depth of about 2 to 3 atomic layers from the surface of the specimen can be measured while discriminating the elements from the atomic layer with a reduced measurement time and with a high accuracy impossible in the conventional technique.
Abstract:
A charged particle spin polarimeter that is capable of resolving with high efficiency the magnetic moment of a charged particle. The charged particle spin polarimeter has a pair of convex and concave magnetic poles to apply a magnetic field with gradient to an incident charged particle and a pair of plain plate electrodes to apply, to a charged particle, an electric field for canceling a Lorentz force that the charged particle receives from the magnetic field. The magnetic moment in the magnetic field direction of a charged particle is resolved by the interaction between the gradient of the magnetic field and the magnetic moment of the charged particle.