Abstract:
A multi-biprism electron interferometer is configured so as to arrange a plurality of biprisms in an imaging optical system of a specimen. An upper electron biprism is arranged upstream of the specimen in the traveling direction of the electron beam, and an image of the electron biprism is formed on the specimen (object plane) using an imaging action of a pre-field of the objective lens. A double-biprism interference optical system is constructed of a lower electron biprism disposed downstream of the objective lens up to the first image plane of the specimen.
Abstract:
Chirality distribution in the molecular structure of protein or the like and magnetic domain structure are analyzed with high resolution less than 10 nm. A transmission electron microscope equipped with a spin-polarized electron source is used for holography observation. The phase of transmission spin-polarized electrons changes due to the existence of chirality structure or magnetization in a sample, which is observed as an interference pattern phase shift in holography measurement.
Abstract:
A magnetic domain imaging system is offered which permits application of a strong magnetic field to a specimen. The imaging system includes a transmission electron microscope having an objective lens. The specimen that is magnetic in nature is placed in the upper polepiece of the objective lens. An electron beam transmitted through the specimen is imaged and displayed on a display device. A field application coil assembly for applying a magnetic field to the specimen and two deflection coil assemblies for bringing the beam deflected by the field applied to the specimen back to the optical axis are mounted in the upper polepiece.
Abstract:
There is disclosed an electron microscope equipped with a magnetic microprobe. The microscope can apply a strong electric field to a local area on a specimen made of a magnetic material. The magnetic flux density per unit area of the microprobe is high. The microscope includes a biprism for producing interference between an electron beam transmitted through the specimen and an electron beam passing through a vacuum. The specimen is held to a holder. The microprobe is made of a magnetic material and has a needle-like tip. The microscope further includes a moving mechanism capable of moving the microprobe toward and away from the specimen.
Abstract:
A magnetic domain imaging system is offered which permits application of a strong magnetic field to a specimen. The imaging system includes a transmission electron microscope having an objective lens. The specimen that is magnetic in nature is placed in the upper polepiece of the objective lens. An electron beam transmitted through the specimen is imaged and displayed on a display device. A field application coil assembly for applying a magnetic field to the specimen and two deflection coil assemblies for bringing the beam deflected by the field applied to the specimen back to the optical axis are mounted in the upper polepiece.
Abstract:
There is disclosed an electron microscope equipped with a magnetic microprobe. The microscope can apply a strong electric field to a local area on a specimen made of a magnetic material. The magnetic flux density per unit area of the microprobe is high. The microscope includes a biprism for producing interference between an electron beam transmitted through the specimen and an electron beam passing through a vacuum. The specimen is held to a holder. The microprobe is made of a magnetic material and has a needle-like tip. The microscope further includes a moving mechanism capable of moving the microprobe toward and away from the specimen.
Abstract:
A multi-biprism electron interferometer is configured so as to arrange a plurality of biprisms in an imaging optical system of a specimen. This generally requires a plurality of ports for the electron biprisms in a magnifying optical system from an objective lens onward and also requires electromagnetic lenses, which are combined with the respective electron biprisms and operated in association therewith, to provide the interference optical system with a degree of freedom. As a result, not only the electron biprism ports but also electromagnetic lenses need to be additionally configured in the imaging optical system of a conventional electron microscope so as to display the performance as the multi-biprism electron interferometer. The present invention arranges an upper electron biprism upstream of the specimen in the traveling direction of the electron beam and forms an image of the electron biprism on the specimen (object plane) using an imaging action of a pre-field of the objective lens. A double-biprism interference optical system is constructed of a lower electron biprism disposed downstream of the objective lens up to the first image plane of the specimen. No new electromagnetic lens needs to be added in this optical system.
Abstract:
Chirality distribution in the molecular structure of protein or the like and magnetic domain structure are analyzed with high resolution less than 10 nm. A transmission electron microscope equipped with a spin-polarized electron source is used for holography observation. The phase of transmission spin-polarized electrons changes due to the existence of chirality structure or magnetization in a sample, which is observed as an interference pattern phase shift in holography measurement.
Abstract:
A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.