摘要:
A heat transport device includes a working fluid, an evaporation portion, a condenser portion, a flow path portion, a concave portion, and a protrusion portion. The evaporation portion causes the working fluid to evaporate from a liquid phase to a vapor phase. The condenser portion communicates with the evaporation portion, and causes the working fluid to condense from the vapor phase to the liquid phase. The flow path portion causes the working fluid condensed in the condenser portion to the liquid phase to flow to the evaporation portion. The concave portion is provided on at least one of the evaporation portion and the flow path portion, in which the liquid-phase working fluid flows. The protrusion portion is made of nanomaterial protruding from an inner wall side surface of the concave portion such that the protrusion portion partially covers an opening surface of the concave portion.
摘要:
In electron holography observation using a transmission electron microscope, searching of conditions of an electron optical condition which are necessary for realizing a requested spatial resolution is sophisticated and for persons unaccustomed to operation of the electron microscope, the observation is time consuming work. In addition to the fundamental electron microscope proper, an input unit for inputting a spatial resolution requested in the holography observation, a calculation unit for calculating positions of electron biprism and specimen necessary for realizing the requested spatial resolution from the inputted value and parameters characteristic of the device and mechanisms for moving the two positions for realizing the obtained calculation results are provided.
摘要:
The present invention provides a MEMS device and methods for manufacturing thereof, in which planarizing the surface of a beam and improving performance of the MEMS device are aimed. In addition, the present invention provides a light modulation device and a GLV device in which this MEMS device is used, and methods for manufacturing thereof; and further, a laser display using this GLV device. According to the present invention, a MEMS device includes a substrate side electrode and a beam that is disposed so as to oppose the substrate side electrode and is driven by electrostatic attraction force or electrostatic repulsion force that acts between the substrate side electrode and the driving side electrode, with the substrate side electrode being formed of a single-crystalline semiconductor layer.
摘要:
Provided is a phase plate for use in an electron microscope which lessens the problem of image information loss caused by interruption of an electron beam and ameliorates the problem of anisotropic potential distributions. This phase plate comprises openings (23) connected into a single opening, and multiple electrodes (11) arranged in the opening from the outer portion of the opening towards the center of the opening. The cross sections of the electrodes (11) are configured such that a voltage application layer (24) comprising a conductor or a semiconductor is covered by a shield layer comprising a conductor or a semiconductor with an intermediate insulating layer. By this means, this phase plate is capable of lessening electron beam interruption due to the electrodes (11), and of ameliorating the problem of anisotropic potential distributions.
摘要:
Provided is a phase plate for use in an electron microscope which lessens the problem of image information loss caused by interruption of an electron beam and ameliorates the problem of anisotropic potential distributions. This phase plate comprises openings (23) connected into a single opening, and multiple electrodes (11) arranged in the opening from the outer portion of the opening towards the center of the opening. The cross sections of the electrodes (11) are configured such that a voltage application layer (24) comprising a conductor or a semiconductor is covered by a shield layer comprising a conductor or a semiconductor with an intermediate insulating layer. By this means, this phase plate is capable of lessening electron beam interruption due to the electrodes (11), and of ameliorating the problem of anisotropic potential distributions.
摘要:
A method of manufacturing a heat transport device including the steps of stacking a first plate, a capillary member, and a second plate by interposing the capillary member between the first plate and the second plate, the first plate and the second plate constituting a container of a heat transport device configured to transport heat using phase change in a working fluid; and diffusion-bonding the first plate and the second plate while deforming the second plate to create an internal space in the container for storing the capillary member.
摘要:
There is a limit in range and distance in which an electron beam can interfere and electron interference is implemented within a range of a coherence length. Therefore, interference images are consecutively recorded for each interference region width from an interference image of a reference wave and an observation region adjacent to the reference wave by considering that a phase distribution regenerated and observed by an interference microscopy is a differential between phase distributions of two waves used for interference and a differential image between phase distributions of a predetermined observation region and a predetermined reference wave is acquired by acquiring integrating phase distributions acquired by individually regenerating the interference images. This work enables a wide range of interference image which is more than a coherence length by arranging phase distribution images performed and acquired in the respective phase distributions in a predetermined order.
摘要:
[Object] To provide a low-cost production method for a heat transportation device with which efficient production with a small number of steps is possible.[Solving Means] A capillary member (5) having a larger thickness than a frame member (2) is mounted on an inner surface (11) of a lower plate member (1). Subsequently, the frame member (2) is mounted on the inner surface (11) of the lower plate member (1), and an upper plate member (3) is mounted on the capillary member (5). Due to a difference between the thickness of the capillary member (5) and the thickness of the frame member (2), a squashing amount (G) is provided between the frame member (2) and the upper plate member (3). Then, the lower plate member (1) and the upper plate member (3) are diffusion-bonded with the frame member (2). At this time, the capillary member (5) is compressed by an amount corresponding to the squashing amount (G). Since the capillary member (5) has elasticity, a pressure (P) is partially absorbed, and a pressure (P′) smaller than the pressure (P) is applied to the lower plate member (1) from the capillary member (5). By the pressure (P′), the inner surface (11) of the lower plate member (1) and the capillary member (5) are diffusion-bonded.
摘要:
An electron beam observation device includes a mechanism which disposes a specimen at an upstream side in an electron beam traveling direction outside an objective lens, from which an image is transferred under a magnification of ⅕ to 1/30, in addition to an inside of the objective lens in which a specimen is disposed at a time of ordinary observation.
摘要:
A multi-biprism electron interferometer is configured so as to arrange a plurality of biprisms in an imaging optical system of a specimen. An upper electron biprism is arranged upstream of the specimen in the traveling direction of the electron beam, and an image of the electron biprism is formed on the specimen (object plane) using an imaging action of a pre-field of the objective lens. A double-biprism interference optical system is constructed of a lower electron biprism disposed downstream of the objective lens up to the first image plane of the specimen.