Abstract:
A system and method are described, for use in cleaning of a vacuum chamber. The method comprising connecting a vacuum chamber to a plasma generating unit via a plasma connection port and connecting the vacuum chamber to a high vacuum pumping unit via a pumping port. A flow conductance through the plasma connection port to the vacuum chamber is controlled to limit passage of charged particles and cleaning substances produced in the plasma generating unit, to thereby maintain a working pressure inside the vacuum chamber while cleaning the vacuum chamber by said cleaning substances.
Abstract:
A high brightness ion source with a gas chamber includes multiple channels, wherein the multiple channels each have a different gas. An electron beam is passed through one of the channels to provide ions of a certain species for processing a sample. The ion species can be rapidly changed by directing the electrons into another channel with a different gas species and processing a sample with ions of a second species. Deflection plates are used to align the electron beam into the gas chamber, thereby allowing the gas species in the focused ion beam to be switched quickly.
Abstract:
An arc-plasma film formation device includes a film formation chamber in which a substrate to be treated is stored, a plasma chamber in which at least a part of a target is stored, the plasma chamber being configured to be connected to the film formation chamber, and a plurality of hollow coils configured to generate a continuous line of magnetic force between the target and the film formation chamber and having at least one curved section, the plurality of hollow coils being arrange in the plasma chamber and covered by an outer coat made of a non-magnetic metal. Plasma containing ions derived from the target material and generated in the plasma chamber as a result of arc discharge is transported from the target to the substrate by passing an inside of the plurality of hollow coils.
Abstract:
Vapor is provided locally at a sample surface to allow fluorescence of the fluorescent markers in a vacuum chamber. For example, a nanocapillary can dispense a liquid near a region of interest, the liquid evaporating to increase the vapor pressure near the fluorescent markers. The increase in vapor pressure at the fluorescent marker is preferably sufficiently great to prevent deactivation or to reactivate the fluorescent marker, while the overall pressure in the vacuum chamber is preferably sufficiently low to permit charged particle beam operation with little or no additional evacuation pumping.
Abstract:
A nozzle assembly used for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the nozzle assembly includes two or more conical nozzles that are aligned such that they are both used to generate the same GCIB. The first conical nozzle may include the throat that initially forms the GCIB and the second nozzle may form a larger conical cavity that may be appended to the first conical nozzle. A transition region may be disposed between the two conical nozzles that may substantially cylindrical and slightly larger than the largest diameter of the first conical nozzle.
Abstract:
A novel method and system for using aluminum dopant compositions is provided. A composition of the aluminum dopant compositions is selected with sufficient vapor pressure and minimal carbon content, thereby enabling ease of delivery to an ion implant process and substantial reduction of carbon deposition during Al ion implantation. The source material is preferably stored and delivered from a sub-atmospheric storage and delivery device to enhance safety and reliability during the Al ion implantation process.
Abstract:
An assembly for adjusting gas flow patterns and gas-plasma interactions including a toroidal plasma chamber. The toroidal plasma chamber has an injection member, an output member, a first side member and a second side member that are all connected. The first side member has a first inner cross-sectional area in at least a portion of the first side member and a second inner cross-sectional area in at least another portion of the first side member, where the first inner cross-sectional area and the second inner-cross-sectional area being different. The second side member has a third inner cross-sectional area in at least a portion of the second side member and a fourth inner cross-sectional area in at least another portion of the second side member, where the third inner cross-sectional area and the fourth inner-cross-sectional area being different.
Abstract:
The invention relates to an arrangement for transporting radicals. The arrangement includes a plasma generator and a guiding body. The plasma generator includes a chamber (2) in which a plasma may be formed. The chamber has an inlet (5) for receiving an input gas, and one or more outlets (6) for removal of at least one of the plasma and radicals created therein. The guiding body is hollow and is arranged for guiding radicals formed in the plasma towards an area or volume at which contaminant deposition is to be removed. The chamber inlet is coupled to a pressure device (40) for providing a pulsed pressure into the chamber so as to create a flow in the guiding body.
Abstract:
A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
Abstract:
An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object.