Abstract:
The present disclosure relates to a structure and method for forming a flash memory cell with an improved erase speed and erase current. Si dots are used for charge trapping and an ONO sandwich structure is formed over the Si dots. Erase operation includes direct tunneling as well as FN tunneling which helps increase erase speed without compensating data retention.
Abstract:
Some embodiments of the present disclosure relate to a method for forming flash memory. In this method, a first tunnel oxide is formed over a semiconductor substrate. A self-assembled monolayer (SAM) is then formed on the first tunnel oxide. The SAM includes spherical or spherical-like crystalline silicon dots having respective diameters which are less than approximately 30 nm. A second tunnel oxide is then formed over the SAM.
Abstract:
Wafer bowing induced by deep trench capacitors is ameliorated by structures formed on the reverse side of the wafer. The structures on the reverse side include tensile films. The films can be formed within trenches on the back side of the wafer, which enhances their effect. In some embodiments, the wafers are used to form 3D-IC devices. In some embodiments, the 3D-IC device includes a high voltage or high power circuit.
Abstract:
The present disclosure relates an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.
Abstract:
A quantum nano-tip (QNT) thin film, such as a silicon nano-tip (SiNT) thin film, for flash memory cells is provided to increase erase speed. The QNT thin film includes a first dielectric layer and a second dielectric layer arranged over the first dielectric layer. Further, the QNT thin film includes QNTs arranged over the first dielectric layer and extending into the second dielectric layer. A ratio of height to width of the QNTs is greater than 50 percent. A QNT based flash memory cell and a method for manufacture a SiNT based flash memory cell are also provided.
Abstract:
The present disclosure relates to a structure and method for reducing dangling bonds around quantum dots in a memory cell. In some embodiments, the structure has a semiconductor substrate having a tunnel dielectric layer disposed over it and a plurality of quantum dots disposed over the tunnel dielectric layer. A passivation layer is formed conformally over outer surfaces of the quantum dots and a top dielectric layer is disposed conformally around the passivation layer. The passivation layer can be formed prior to forming the top dielectric layer over the quantum dots or after forming the top dielectric layer. The passivation layer reduces the dangling bonds at an interface between the quantum dots and the top dielectric layer, thereby preventing trap sites that may hinder operations of the memory cell.
Abstract:
A quantum nano-tip (QNT) thin film, such as a silicon nano-tip (SiNT) thin film, for flash memory cells is provided to increase erase speed. The QNT thin film includes a first dielectric layer and a second dielectric layer arranged over the first dielectric layer. Further, the QNT thin film includes QNTs arranged over the first dielectric layer and extending into the second dielectric layer. A ratio of height to width of the QNTs is greater than 50 percent. A QNT based flash memory cell and a method for manufacture a SiNT based flash memory cell are also provided.
Abstract:
Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements within a memory cell. A copolymer solution having first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material having a regular pattern of micro-domains of the second polymer species within a polymer matrix having the first polymer species. The second polymer species is then removed resulting with a pattern of holes within the polymer matrix. An etch is then performed through the holes utilizing the polymer matrix as a hard-mask to form a substantially identical pattern of holes in a dielectric layer disposed over a seed layer disposed over the substrate surface. Epitaxial deposition onto the seed layer then utilized to grow a substantially uniform pattern of discrete storage elements within the dielectric layer.
Abstract:
Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements within a memory cell. A copolymer solution comprising first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material comprising a regular pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The second polymer species is then removed resulting with a pattern of holes within the polymer matrix. An etch is then performed through the holes utilizing the polymer matrix as a hard-mask to form a substantially identical pattern of holes in a dielectric layer disposed over a seed layer disposed over the substrate surface. Epitaxial deposition onto the seed layer then utilized to grow a substantially uniform pattern of discrete storage elements within the dielectric layer.
Abstract:
Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements comprising a substantially equal size within a memory cell. A copolymer solution comprising first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material comprising a regular pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first or second polymer species is then removed resulting with a pattern of micro-domains or the polymer matrix with a pattern of holes, which may be utilized as a hard-mask to form a substantially identical pattern of discrete storage elements through an etch, ion implant technique, or a combination thereof.