Abstract:
A method and structure for providing a GAA device. In some embodiments, a substrate including an insulating layer disposed thereon is provided. By way of example, a first metal portion is formed within the insulating layer. In various embodiments, a first lateral surface of the first metal portion is exposed. After exposure of the first lateral surface of the first metal portion, a first graphene layer is formed on the exposed first lateral surface. In some embodiments, the first graphene layer defines a first vertical plane parallel to the exposed first lateral surface. Thereafter, in some embodiments, a first nanobar is formed on the first graphene layer, where the first nanobar extends in a first direction normal to the first vertical plane defined by the first graphene layer.
Abstract:
A FinFET device includes a substrate, a fin formed on the substrate, and a gate electrode crossing the fin. The gate electrode includes a head portion and a tail portion, and the tail portion is connected to the head portion and extended toward the substrate. The width of the head portion is greater than that of the tail portion.
Abstract:
A semiconductor device includes a FinFET component, a plurality of patterned dummy semiconductor fins arranged aside a plurality of fins of the FinFET component, an isolation structure formed on the patterned dummy semiconductor fins, and a tuning component formed on the patterned dummy semiconductor fins and electrically connected to the FinFET component. A height of the patterned dummy semiconductor fins is shorter than that of the fins of the FinFET component.
Abstract:
Some embodiments of the present disclosure relate to a memory array comprising memory cells having vertical gate-all-around (GAA) selection transistors. In some embodiments, the memory array has a source region disposed within an upper surface of a semiconductor body, and a semiconductor pillar of semiconductor material extending outward from the upper surface of the semiconductor body and having a channel region and an overlying drain region. A gate region vertically overlies the source region at a position laterally separated from sidewalls of the channel region by a gate dielectric layer. A first metal contact couples the drain region to a data storage element that stores data. The vertical GAA selection transistors provide for good performance, while decreasing the size of the selection transistor relative to a planar MOSFET, so that the selection transistors do not negatively impact the size of the memory array.
Abstract:
A semiconductor device includes a semiconductor substrate comprising a contact region, a silicide present on the contact region, a dielectric layer present on the semiconductor substrate, the dielectric layer comprising an opening to expose a portion of the contact region, a conductor present in the opening, a barrier layer present between the conductor and the dielectric layer, and a metal layer present between the barrier layer and the dielectric layer, wherein a Si concentration of the silicide is varied along a height of the silicide.
Abstract:
A method includes forming a gate stack on a middle portion of s semiconductor fin, and forming a first gate spacer on a sidewall of the gate stack. After the first gate spacer is formed, a template dielectric region is formed to cover the semiconductor fin. The method further includes recessing the template dielectric region. After the recessing, a second gate spacer is formed on the sidewall of the gate stack. The end portion of the semiconductor fin is etched to form a recess in the template dielectric region. A source/drain region is epitaxially grown in the recess.
Abstract:
A method includes forming Shallow Trench Isolation (STI) regions in a semiconductor substrate and a semiconductor strip between the STI regions. The method also include replacing a top portion of the semiconductor strip with a first semiconductor layer and a second semiconductor layer over the first semiconductor layer. The first semiconductor layer has a first germanium percentage higher than a second germanium percentage of the second semiconductor layer. The method also includes recessing the STI regions to form semiconductor fins, forming a gate stack over a middle portion of the semiconductor fin, and forming gate spacers on sidewalls of the gate stack. The method further includes forming fin spacers on sidewalls of an end portion of the semiconductor fin, recessing the end portion of the semiconductor fin, and growing an epitaxial region over the end portion of the semiconductor fin.
Abstract:
A semiconductor device includes a FinFET component, a plurality of patterned dummy semiconductor fins arranged aside a plurality of fins of the FinFET component, an isolation structure formed on the patterned dummy semiconductor fins, and a tuning component formed on the patterned dummy semiconductor fins and electrically connected to the FinFET component. A height of the patterned dummy semiconductor fins is shorter than that of the fins of the FinFET component.
Abstract:
Exemplary FET devices having 2D material layer active regions and methods of fabricating thereof are described. For example, a black phosphorus active region has a first thickness in the channel region and a second, greater, thickness in the source/drain (S/D) region. The BP in the S/D region has a sidewall that interfaces a contact disposed over the FET. A gate electrode is disposed over the channel region. In some embodiments, the sidewall has passivated edge. In some embodiments, the sidewall is nonlinear. In some embodiments, the stress layer is disposed over the 2D material layer.
Abstract:
A semiconductor device includes a semiconductor substrate, a contact region present in the semiconductor substrate, and a silicide present on a textured surface of the contact region. A plurality of sputter ions is present between the silicide and the contact region. Since the surface of the contact region is textured, the contact area provided by the silicide is increased accordingly, thus the resistance of a interconnection structure in the semiconductor device is reduced.