Abstract:
An embedded multi-terminal capacitor embedded in a substrate cavity includes at least one metal layer patterned into a plurality of power rails and a plurality of ground rails. The substrate includes an external power network.
Abstract:
A substrate includes a plurality of vias that are lined with dielectric polymer having a substantially uniform thickness. This substantial uniform thickness provides a lumen within each dielectric-polymer-layer-lined via that is substantially centered within the via. Subsequent deposition of metal into the lumen for each dielectric-polymer-layer-lined via thus provides conductive vias having substantially centered metal conductors.
Abstract:
Provided herein is an integrated device that includes a substrate, a die, a heat-dissipation layer located between the substrate and the die, and a first interconnect configured to couple the die to the heat-dissipation layer. The heat-dissipation layer may be configured to provide an electrical path for a ground signal. The first interconnect may be further configured to conduct heat from the die to the heat-dissipation layer. The integrated device may also include a second interconnect configured to couple the die to the substrate. The second interconnect may be further configured to conduct a power signal between the die and the substrate. The integrated device may also include a dielectric layer located between the heat-dissipation layer and the substrate, and a solder-resist layer located between the die and the heat-dissipation layer.
Abstract:
An integrated device package includes a first die, a second die, an encapsulation portion coupled to the first die and the second die, and a redistribution portion coupled to the encapsulation portion. The encapsulation portion includes an encapsulation layer, a bridge, and a first via. The bridge is at least partially embedded in the encapsulation layer. The bridge is configured to provide a first electrical path for a first signal between the first die and the second die. The first via is in the encapsulation layer. The first via is coupled to the bridge. The first via and the bridge are configured to provide a second electrical path for a second signal to the first die. The redistribution portion includes at least one dielectric layer, and at least one interconnect, in the dielectric layer, coupled to the first via.
Abstract:
A method and apparatus for testing near field magnetic fields of electronic devices. The method comprises measuring a magnetic field using a loop antenna that is oriented in a first direction. The loop antenna is swept through a desired range of azimuth angles while measuring the magnetic field. Once the first direction testing is completed, the loop antenna is changed to a second orientation direction. The magnetic field is then measured in the second orientation direction and is swept through a desired range of orientation angles in the second direction. The apparatus provides a loop antenna connected to a coaxial probe, with the coaxial cable serving as the center conductor, and two outer conductors. An axle is mounted to the loop antenna and connected to a step motor. A servo motor is also provided for moving the arm assembly.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first interconnect coupled to the substrate, and a second interconnect surrounding the first interconnect. The second interconnect may be configured to provide an electrical connection to ground. In some implementations, the second interconnect includes a plate. In some implementations, the integrated device also includes a dielectric material between the first interconnect and the second interconnect. In some implementations, the integrated device also includes a mold surrounding the second interconnect. In some implementations, the first interconnect is configured to conduct a power signal in a first direction. In some implementations, the second interconnect is configured to conduct a grounding signal in a second direction. In some implementations, the second direction is different from the first direction. In some implementations, the integrated device may be a package-on-package (PoP) device.
Abstract:
Some novel features pertain to an integrated device (e.g., integrated package) that includes a base portion for the integrated device, a first die (e.g., first wafer level die), and a second die (e.g., second wafer level die). The base portion includes a first inorganic dielectric layer, a first set of interconnects located in the first inorganic dielectric layer, a second dielectric layer different from the first inorganic dielectric layer, and a set of redistribution metal layers in the second dielectric layer. The first die is coupled to a first surface of the base portion. The second die is coupled to the first surface of the base portion, the second die is electrically coupled to the first die through the first set of interconnects.
Abstract:
Systems and methods for EMC, EMI and ESD testing are described. A probe comprises a center conductor extending along an axis of the probe, a probe tip, and a shield coaxially aligned with the center conductor and configured to provide electromagnetic screening for the probe tip. One or more actuators may change the relative positions of the probe tip and shield with respect to a device under test, thereby enabling control of sensitivity and resolution of the probe.
Abstract:
A bottom package substrate is provided that includes a plurality of metal posts that electrically couple through a die-side redistribution layer to a plurality of die interconnects. The metal posts and the die interconnects are plated onto a seed layer on the bottom package substrate.