Abstract:
When silver oxide is reduced to silver, a large number of cores of metallic silver are formed inside the silver oxide. Then, the silver oxide is reduced in a manner of being hollowed out while its original outer configuration is being maintained. As a result, the curvature of the silver generated becomes larger. The utilization of this microscopic-particle implementation mechanism allows accomplishment of the bonding even if the silver oxide is supplied not in a particle-like configuration, but in a closely-packed layer-like configuration. In the present invention, there is provided an electronic member including an electrode for inputting/outputting an electrical signal, or a connection terminal for establishing a connection with the electrical signal, wherein the uppermost surface of the electrode or the connection terminal is a silver-oxide layer.
Abstract:
A semiconductor device having a structure in which a semiconductor element and a Cu or Ni electrode are connected by way of a bonding layer comprising Cu, and the Cu bonding layer and the Cu or Ni electrode are diffusion-bonded to each other. The bonding layer is formed by conducting bonding in a reducing atmosphere by using a bonding material containing particles of Cu oxide with an average particle size of 1 nm to 50 μm and a reducing agent comprising an organic material, thereby providing excellent bonding strength to Ni or Cu electrode.
Abstract:
There is provided a conductive sintered layer forming composition and a conductive sintered layer forming method that can lower heating temperature and shorten heating time for a process of accelerating sintering or bonding by sintering of metal nano-particles coated with an organic substance. The conductive sintered layer forming composition may be obtained by utilizing a phenomenon that particles may be sintered at low temperature by mixing silver oxide with metal particles coated with the organic substance and having a grain size of 1 nm to 5 μm as compared to sintering each simple substance. The conductive sintered layer forming composition of the invention is characterized in that it contains the metal particles whose surface is coated with the organic substance and whose grain size is 1 nm to 5 μm and the silver oxide particles.
Abstract:
A bonding material comprising metal particles coated with an organic substance having carbon atoms of 2 to 8, wherein the metal particles comprises first portion of 100 nm or less, and a second portion larger than 100 nm but not larger than 100 μm, each of the portions having at least peak of a particle distribution, based on a volumetric base. The disclosure is further concerned with a bonding method using the bonding material.
Abstract:
A semiconductor device achieving both electromagnetic wave shielding property and reliability in a heating process upon mounting electronic components. In the semiconductor device, mount devices 5 and 6 mounted on a main surface of a circuit board 1 are provided, the mount devices 5 and 6 are electrically connected to a wiring pattern 4 at the main surface of the circuit board 1, a sealant 7 of an insulating resin is formed to seal the mount devices 5 and 6, metal particles are applied to a surface of the sealant 7, and the metal particles applied are sintered, thereby forming an electromagnetic shielding layer 2, and electrically connecting the electromagnetic shielding layer 2 to a ground pattern 3 of the circuit board 1.
Abstract:
A semiconductor device wherein a semiconductor element made of Si or Si group material mounted on a substrate, the semiconductor element is mounted on the substrate and the semiconductor element is bonded to a silver bonding material via a oxide film formed on the semiconductor element. The bonding material comprising silver oxide particles having an average particle size of 1 nm to 50 nm and an organic reducing agent is used for bonding in air, which gives a high bonding strength to the oxide on the semiconductor element.
Abstract:
A metal particle having an organic substance coated thereon, dispersibility that is the same as that of a known metal particle having an organic substance coated thereon, and an improved low temperature connectability. A method for forming interconnect between materials by using the interconnect materials that include a metal particle on which an organic substance is coated, which includes the steps of coating the interconnect materials on subject interconnect materials, and heating the materials at a temperature in the range of 50 to 400° C. for 1 sec to 10 min to form a sintered body made of metal between the subject interconnect materials. The organic substance is a secondary amine having a molecular weight of 250 or less, and the metal particle is made of a unit of silver, copper, or gold, which has a mean diameter of 100 nm or less, or a mixture thereof.
Abstract:
An object of the present invention is to provide a bonding material that is excellent in shear strength and a capability of heat radiation of a bonding layer and can be formed into a sheet. The present invention has a feature of providing a bonding material comprising metal fibers each of which is coated on its surface with an organic material or a metal oxide, has an aspect ratio not more than 2, and has a longitudinal length equal to or less than 100 μm; and metal particles each of which is coated on its surface with an organic material or a metal oxide, has an aspect ratio equal to or less than 1.5, and has a particle size equal to or less than 100 nm, wherein sintering of the metal particles forms metallic bonds between the bonding material and surfaces of members to be bonded, thereby bonding the members to be bonded together.
Abstract:
It is an object of this invention to provide a bonding material capable of realizing bonding by metallic bonding at a bonding interface at a lower temperature compared to a bonding material using a metal particle having an average particle diameter of not more than 100 nm and a bonding method. There is provided a bonding material including a metal particle precursor being at least one selected from the group consisting of a particle of a metal oxide, a particle of a metal carbonate, and a particle of a metal carboxylate and having an average particle diameter of 1 nm to 50 μm and a reducing agent composed of an organic substance, wherein the content of the metal particle precursor is more than 50 parts by mass and not more than 99 parts by mass per 100 parts by mass of the bonding material.
Abstract:
A bonding material comprising metal particles coated with an organic substance having carbon atoms of 2 to 8, wherein the metal particles comprises first portion of 100 nm or less, and a second portion larger than 100 nm but not larger than 100 μm, each of the portions having at least peak of a particle distribution, based on a volumetric base. The disclosure is further concerned with a bonding method using the bonding material.