Abstract:
A semiconductor device is provided. The semiconductor device includes a substrate, a field plate, a gate electrode, and a first dielectric layer. The substrate has a top surface. The substrate includes a first drift region with a first conductivity type extending from the top surface of the substrate into the substrate, and includes a second drill region with the first conductivity type extending from the top surface of the substrate into the substrate and adjacent to the first drift region. The field plate is over the substrate. The gate electrode has a first portion and a second portion, wherein the first portion of the gate electrode is located over the field plate. The first dielectric layer is between the substrate and the field plate. The first portion of the gate electrode is overlapping with a boundary of the first drift region and the second drift region in the substrate.
Abstract:
According to one embodiment, a semiconductor device includes a first semiconductor chip including a first metal pad and a second metal pad; and a second semiconductor chip including a third metal pad and a fourth metal pad, the third metal pad joined to the first metal pad, the fourth metal pad coupled to the second metal pad via a dielectric layer, wherein the second semiconductor chip is coupled to the first semiconductor chip via the first metal pad and the third metal pad.
Abstract:
The present disclosure relates to an integrated chip including a dielectric structure over a substrate. A first capacitor is disposed between sidewalls of the dielectric structure. The first capacitor includes a first electrode between the sidewalls of the dielectric structure and a second electrode between the sidewalls and over the first electrode. A second capacitor is disposed between the sidewalls. The second capacitor includes the second electrode and a third electrode between the sidewalls and over the second electrode. A third capacitor is disposed between the sidewalls. The third capacitor includes the third electrode and a fourth electrode between the sidewalls and over the third electrode. The first capacitor, the second capacitor, and the third capacitor are coupled in parallel by a first contact on a first side of the first capacitor and a second contact on a second side of the first capacitor.
Abstract:
A ferroelectric device structure includes an array of ferroelectric capacitors overlying a substrate, first metal interconnect structures electrically connecting each of first electrodes of the array of ferroelectric capacitors to a first metal pad embedded in a dielectric material layer, and second metal interconnect structures electrically connecting each of the second electrodes of the array of ferroelectric capacitors to a second metal pad embedded in the dielectric material layer. The second metal pad may be vertically spaced from the substrate by a same vertical separation distance as the first metal pad is from the substrate. First metal lines laterally extending along a first horizontal direction may electrically connect the first electrodes to the first metal pad, and second metal lines laterally extending along the first horizontal direction may electrically connect each of the second electrodes to the second metal pad.
Abstract:
A miniaturized transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A transistor having a large amount of on-state current is provided. A semiconductor device including the transistor is provided. A semiconductor device with high integration is provided. A novel capacitor is provided. The capacitor includes a first conductor, a second conductor, and an insulator. The first conductor includes a region overlapping with the second conductor with the insulator provided therebetween. The first conductor includes tungsten and silicon. The insulator includes a silicon oxide film that is formed by oxidizing the first conductor.
Abstract:
A semiconductor device includes a semiconductor substrate having a fin-type field effect transistor (finFET) on a first region and a fin varactor on a second region. The finFET includes a first semiconductor fin that extends from an upper finFET surface thereof to the upper surface of the first region to define a first total fin height. The fin varactor includes a second semiconductor fin that extends from an upper varactor surface thereof to the upper surface of the second region to define a second total fin height that is different from the first total fin height of the finFET.
Abstract:
A method is provided for forming a metal-insulator-metal capacitor in a replacement metal gate module. The method includes providing a gate cap formed on a gate. The method further includes removing a portion of the gate cap and forming a recess in the gate. A remaining portion of the gate forms a first electrode of the capacitor. The method also includes depositing a dielectric on remaining portions of the gate cap and the remaining portion of the gate. The method additionally includes depositing a conductive material on the dielectric. The method further includes removing a portion of the conductive material and portions of the dielectric to expose a remaining portion of the conductive material and a remaining portion of the dielectric. The remaining portion of the conductive material forms a second electrode of the capacitor. The remaining portion of the dielectric forms an insulator of the capacitor.
Abstract:
An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
Abstract:
A circuit can include a transistor, a capacitive element, and a rectifying element. The rectifying element and the capacitive element can be serially connected and coupled to the current-carrying terminals of the transistor. An electronic device may include part of the circuit. The electronic device can include a diode that includes a horizontally-oriented semiconductor member and a vertically-oriented semiconductor member having different conductivity types. The ends of the horizontally-oriented semiconductor and vertically-oriented semiconductor members physically contact each other. A process of forming an electronic device can include forming a semiconductor layer and forming a second semiconductor member. In a finished device, a diode includes a junction between dopants of first and second conductivity types within the semiconductor layer, within the semiconductor member, or at an interface between the semiconductor layer and the semiconductor member.
Abstract:
An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.