Abstract:
Method of assembly of a first element (I) and a second element (II) each having an assembly surface, at least one of the assembly surfaces comprising recessed metal portions (6, 106) surrounded by dielectric materials (4, 104) comprising: A) a step to bring the two assembly surfaces into contact without application of pressure such that direct bonding is obtained between the assembly surfaces, said first and second assemblies (I, II) forming a stack with a given thickness (e), B) a heat treatment step of said stack during which the back faces (10, 110) of the first (I) and the second (II) elements are held in position so that they are held at a fixed distance (E) between the given stack thickness+/−2 nm.
Abstract:
A method of manufacturing a semiconductor device that includes an insulated circuit board having a conductive pattern, a first semiconductor chip with a rectangular shape connected through a first joining material to the conductive pattern, a second semiconductor chip with a rectangular shape disposed on the conductive pattern separated from the first semiconductor chip and connected through a second joining material to the conductive pattern, a terminal disposed above the semiconductor chips, respectively connected to the first and second semiconductor chips through third and fourth joining materials, the terminal having a through-hole above a place between the first and second semiconductor chips, the method including a positioning step in which the first and second semiconductor chips are respectively positioned at at least three positioning places, and at least one of the positioning places is positioned with a positioning member inserted into the through-hole.
Abstract:
Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
Abstract:
A method for mounting components on a substrate is provided. The method includes providing a positioning plate which has a plurality of through holes. The method further includes supplying components each having a longitudinal portion on the positioning plate. The method also includes performing a component alignment process to put the longitudinal portions of the components in the through holes. In addition, the method includes connecting a substrate to the components which have their longitudinal portions in the through holes and removing the positioning plate.
Abstract:
Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
Abstract:
A guide apparatus configured to transfer light-emitting devices in a liquid onto a substrate is provided. The guide apparatus includes a base configured to support the substrate; and a guide member configured to couple with the base to be seated on a mounting surface of the substrate in a state in which the substrate is supported on a surface of the base, wherein the guide member includes guide holes configured to respectively guide the light-emitting devices in the liquid to be disposed on the mounting surface of the substrate.
Abstract:
A semiconductor device has a plurality of small-sized semiconductor chips disposed between an insulated circuit board having a conductive pattern and a terminal. The semiconductor device exhibits a high accuracy in positioning the semiconductor chips. The semiconductor device includes an insulated circuit board having a conductive pattern, a first semiconductor chip with a rectangular shape connected to the conductive pattern through a first joining material, a second semiconductor chip with a rectangular shape, disposed on the conductive pattern separated from the first semiconductor chip and connected to the conductive pattern through a second joining material, and a terminal disposed above the first semiconductor chip and the second semiconductor chip, connected to the first semiconductor chip through a third joining material, and connected to the second semiconductor chip through a fourth joining material. The terminal has a through-hole above a place between the first semiconductor chip and the second semiconductor chip.
Abstract:
Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
Abstract:
Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
Abstract:
Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.