Abstract:
A through wire interconnect for a semiconductor substrate includes a via extending through the semiconductor substrate from the first side to the second side thereof; a wire in the via having a first end with a bonded connection to the substrate contact and a second end proximate to the second side of the semiconductor substrate; a dielectric material in the via configured to electrically insulate the wire from the semiconductor substrate; a bonding member bonded to the first end of the wire and to the substrate contact configured to secure the wire to the substrate contact; and a contact on the second end of the wire.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a compressed wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate.
Abstract:
A method of teaching bonding locations of a semiconductor device on a wire bonding machine is provided. The method includes (1) providing the wire bonding machine with position data for (a) bonding locations of a first component of the semiconductor device, and (b) bonding locations of a second component of the semiconductor device; and (2) teaching the bonding locations of the first component of the semiconductor device and the second component of the semiconductor device using a pattern recognition system of the wire bonding machine to obtain more accurate position data for at least a portion of the bonding locations of the first component and the second component. The teaching step is conducted by teaching the bonding locations in the order in which they are configured to be wire bonded on the wire bonding machine.
Abstract:
A bonding apparatus provided with a control unit capable of controlling the position of the central axis of a bonding tool in the X direction and the Y direction based on an image of a pad acquired with a camera and an offset amount, the apparatus including: an outline obtaining unit for obtaining each of the sides of the pad and an outline of a pressure-bonded ball by processing the image acquired with the camera; a gap length obtaining unit for obtaining gap lengths between the respective sides of the pad and the outline of the pressure-bonded ball; and an offset correcting unit for correcting the offset amount based on the gap lengths obtained by the gap obtaining unit.
Abstract:
A method of teaching an eyepoint for a wire bonding operation is provided. The method includes (1) selecting a group of shapes from a region of a semiconductor device for use as an eyepoint, and (2) teaching the eyepoint to a wire bonding machine using at least one of (a) a sample semiconductor device, or (b) predetermined data related to the semiconductor device. The teaching step includes defining locations of each of the shapes with respect to one another.
Abstract:
An alignment key structure in a semiconductor device is provided. The alignment key structure includes an insulation layer formed on a substrate, and a passivation layer pattern formed on the insulation layer. The insulation layer includes a plurality of metal wirings. The passivation layer pattern includes a first opening that exposes at least one of the metal wirings. Moreover, the first opening has a width which is narrower than a width of the exposed metal wiring.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate. A method for fabricating a semiconductor component with a through wire interconnect includes the steps of providing a semiconductor substrate with a substrate contact, forming a via through the substrate contact and part way through the substrate, placing the wire in the via, bonding the wire to the substrate contact, and then thinning the substrate from a second side to expose a contact on the wire. A system for fabricating the semiconductor component includes a bonding capillary configured to place the wire in the via, and to form a bonded connection between the wire and the substrate contact.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate. A method for fabricating a semiconductor component with a through wire interconnect includes the steps of providing a semiconductor substrate with a substrate contact, forming a via through the substrate contact and part way through the substrate, placing the wire in the via, bonding the wire to the substrate contact, and then thinning the substrate from a second side to expose a contact on the wire. A system for fabricating the semiconductor component includes a bonding capillary configured to place the wire in the via, and to form a bonded connection between the wire and the substrate contact.
Abstract:
With an assumption that the three data of the position (X1, Y1) of the first positioning pattern 202 and position (X2, Y2) of the second positioning pattern 212 of the reference chip 200, and the position (X3, Y3) of the first positioning pattern 232 of the bonding object chip 230, as well as the length L of a line segment connecting (X1, Y1) and (X2, Y2), and the angle θ2 of this line segment with respect to the X axis, are known, the coordinates (X4, Y4) of the center position of the imaging range 250 that is to be imaged next is determined by detecting the inclination-angle Δθ of the first positioning pattern 232 of the bonding object chip 230. Furthermore, the imaging range can be narrowed and the second positioning pattern 252 can be captured by increasing the precision of Δθ.
Abstract:
With an assumption that the three data of the position (X1, Y1) of the first positioning pattern 202 and position (X2, Y2) of the second positioning pattern 212 of the reference chip 200, and the position (X3, Y3) of the first positioning pattern 232 of the bonding object chip 230, as well as the length L of a line segment connecting (X1, Y1) and (X2, Y2), and the angle θ2 of this line segment with respect to the X axis, are known, the coordinates (X4, Y4) of the center position of the imaging range 250 that is to be imaged next is determined by detecting the inclination-angle Δθ of the first positioning pattern 232 of the bonding object chip 230. Furthermore, the imaging range can be narrowed and the second positioning pattern 252 can be captured by increasing the precision of Δθ.