Delayed pyrophosphorolysis activated polymerization

    公开(公告)号:US11845981B2

    公开(公告)日:2023-12-19

    申请号:US17586596

    申请日:2022-01-27

    摘要: A minimal-copy-ratio of templates is a problem in detecting early stage cancer where minimal copies of somatic cancer-specific mutations are targeted in the presence of large copies of wildtype genome DNA, commonly a 1/10,000 or even less minimal-copy-ratios between the mutant target and wildtype control templates. To overcome this problem, delayed pyrophosphorolysis activated polymerization (delayed-PAP) was developed which can delay product accumulation of the wildtype control to a much later time or cycle, such as by 15 cycles or by 30,000 folds. In the multiplex format, delayed-PAP is particularly useful to amplify not only the wildtype control but also mutant target templates accurately and consistently in the minimal-copy-ratio situation.

    High throughput method of DNA methylation haplotyping

    公开(公告)号:US09797005B2

    公开(公告)日:2017-10-24

    申请号:US12094952

    申请日:2006-11-22

    IPC分类号: C12Q1/68

    摘要: Particular aspects provide novel, high-throughput methods to quantify DNA methylation (e.g., at a single-base resolution) in an allele-specific manner. The methods comprise use of an allele-specific sequence polymorphism (e.g., allele-specific single nucleotide polymorphism; SNP) in sufficient proximity to a CpG methylation site to provide for distinguishing the methylation levels between two alleles. In particular aspects, after bisulfite modification, the genomic DNA region is PCR-amplified, and the product subjected to allele-specific pyrosequencing, and the percentage of methylation determined based on the percentage of cytosine to thymidine conversion. In further embodiments, MethyLight™ is used after bisulfite treatment. The inventive methodology has, for example, substantial utility for affording quantitative analyses in the regulation of analyses of X-inactivation, the allele-specific expression of genes (e.g., in the immune system) and junk DNA, etc., and in classifying an individual as to whether they have loss of imprinting (LOI).