Abstract:
The present invention is directed to a method of preparing a molecular sieve of SWY framework type, denominated STA-30. STA-30 is synthesized using 1,4-diazabicyclo[2.2.2]octane, 1-azabicyclo[2.2.2]octane derivates and combinations thereof as structure directing agents. The resulting molecular sieve is useful as catalysts, particularly when used in combination with exchanged transition metal(s) for the Selective Catalytic Reduction (SCR) of NO.
Abstract:
A microporous crystalline material of a zeolitic nature, that corresponds to the empirical formulax(M1/nXO2):yYO2:zGeO2:(1nullz)TO2wherein x has a value between 0 and 0.2; y has a value between 0 and 0.1; z has a value between 0 and 0.67; being at least one of the z, x and y above zero; M is selected between Hnull and inorganic cations with a nulln charge; X is at least one chemical element with a null3 oxidation status; Y is at least one chemical element with a null4 oxidation status; and T is at least one chemical element with a null4 oxidation status; and is also characterised by its X-ray diffraction pattern and its microporous properties, and can be employed as a catalyst or oxidating agent in the separation and transformation of organic compounds.
Abstract:
A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 null to about 30 null and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3null to about 3.5null at 2null. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Abstract translation:一种用于处理有机化合物的方法包括提供一种组合物,其包括基本上介孔结构的二氧化硅,其含有至少97体积%的孔径范围为约至约的孔,并且具有至少约0.01的微孔体积 cc / g,其中介孔结构具有至少约0.02重量%的至少一种选自Al,Ti,V,Cr,Zn,Fe,Sn,Mo的催化和/或化学活性的杂原子 ,Ga,Ni,Co,In,Zr,Mn,Cu,Mg,Pd,Pt和W,催化剂在2θ处具有0.3°至约3.5°的一个峰的X射线衍射图。 催化剂在反应条件下与有机原料接触,其中处理过程选自烷基化,酰化,低聚,选择性氧化,加氢处理,异构化,脱金属催化脱蜡,羟基化,氢化,氨肟化,异构化,脱氢,裂化和吸附。
Abstract:
There is provided a catalytic composition which comprises a crystalline chromosilicate and a porous refractory inorganic oxide, said chromosilicate and said inorganic oxide having been intimately admixed with one another, said chromosilicate comprising a molecular sieve material providing a specific X-ray diffraction pattern and having the following composition in terms of mole ratios of oxides:0.9.+-.0.2 M.sub.2/n O:Cr.sub.2 O.sub.3 :YSiO.sub.2 :ZH.sub.2 O,wherein M is at least one cation having a valence of n, Y is within the range of about 4 to about 200, and Z is a value within the range of 0 to about 160. There is also provided a method for preparing such a catalytic composition.There is provided a process for the conversion of a hydrocarbon stream, which process comprises contacting said stream at conversion conditions with the above catalytic composition. In addition, there is provided a process for the isomerization of a xylene feed, which process comprises contacting said feed at isomerization conditions with the above catalytic composition.
Abstract:
There is provided a catalytic composition which comprises a mixture of a crystalline chromosilicate and an oxide of chromium, said catalytic composition providing a specific X-ray diffraction pattern and having the following composition in terms of mole ratios of oxides:0.9.+-.0.2 M.sub.2/n O:Cr.sub.2 O.sub.3 :YSiO.sub.2 :ZH.sub.2 O,wherein M is at least one cation having a valence of n, Y is a value within the range of about 4 to about 500, and Z is a value within the range of about 0 to about 160. There is also provided a method for preparing such a catalytic composition.There is provided a process for the conversion of a hydrocarbon stream which comprises contacting said stream at conversion conditions with the above catalytic composition. In addition, there is provided a process for the isomerization of a xylene feed which comprises contacting said feed at isomerization conditions with the above catalytic composition.
Abstract:
A process for the hydroxylation of aromatic hydrocarbons by hydrogen peroxide, consisting in reacting said compounds in the presence of synthetic zeolites which contain heteroatoms, both replaced and exchanged.The reaction is carried out at a temperature comprised between 80.degree. C. and 120.degree. C. and in the presence of the hydrocarbon only or in the presence of a solvent which permits, at least partially, to admix the aromatic hydrocarbon with the hydrogen peroxide.
Abstract:
Embodiments of the present disclosure relate to zeolites and method for making such zeolites. According to embodiments disclosed herein, a zeolite may have a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm and a plurality of mesopores having diameters of greater than 2 nm and less than or equal to 50 nm. The microporous framework may include an MFI framework type. The microporous framework may include silicon atoms, aluminum atoms, oxygen atoms, and transition metal atoms. The transition metal atoms may be dispersed throughout the entire microporous framework.
Abstract:
A process of producing a zeotype material having a zeolite-type framework. The process includes providing a zeolite having a framework, dealuminating the zeolite to remove aluminum atoms therefrom to produce a dealuminated framework comprising a plurality of vacancy sites, contacting the dealuminated framework with dichloromethane and a precursor comprising heteroatoms, and then heating the dealuminated framework, the dichloromethane, and the precursor under reflux conditions to incorporate the heteroatoms into at least some of the plurality of vacancy sites in the dealuminated framework to produce a zeotype material having a zeolite-type framework comprising the heteroatoms. In addition, a process is provided for producing a stannosilicate comprising a zeolite-type framework comprising Sn heteroatoms incorporated therein which form Sn sites in the zeolite-type framework each having an open configuration or a closed configuration. This process includes controlling relative amounts of Sn sites having open and closed configurations in the stannosilicate.
Abstract:
A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of refractory oxide containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2 theta (θ). The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Abstract:
A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2θ. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.