Abstract:
The present disclosure relates to the preparation of pyridine derivatives, such as α-picoline or α-parvoline, and catalysts useful for the selective preparation of such pyridine derivatives. Particularly, the present disclosure relates to the selective preparation of certain pyridine derivative using dealuminated zeolite catalysts.
Abstract:
A new crystalline aluminosilicate zeolite comprising a MTT framework has been synthesized that has been designated UZM-53. This zeolite is represented by the empirical formula: M+mRrAl1-xExSiyOz where M represents sodium, potassium or a combination of sodium and potassium cations, R is the organic structure directing agent or agents derived from reactants R1 and R2 where R1 is diisopropanolamine and R2 is a chelating diamine, and E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof. Catalysts made from UZM-53 have utility in various hydrocarbon conversion reactions such as oligomerization.
Abstract:
A new crystalline molecular sieve designated SSZ-95 is disclosed. In general, SSZ-95 is synthesized from a reaction mixture suitable for synthesizing MTT-type molecular sieves and maintaining the mixture under crystallization conditions sufficient to form product. The product molecular sieve is subjected to a pre-calcination step, and ion-exchange to remove extra-framework cations, and a post-calcination step. The molecular sieve has a MTT-type framework and a H-D exchangeable acid site density of 0 to 50% relative to molecular sieve SSZ-32.
Abstract:
A process for preparing a tin-containing zeolitic material having an MWW-type framework structure comprising providing a zeolitic material having an MWW-type framework structure having vacant tetrahedral framework sites, providing a tin-ion source in solid form, and incorporating tin into the zeolitic material via solid-state ion exchange.
Abstract:
The present disclosure is directed to methods of producing zincoaluminosilicate structures with AEI, CHA, and GME topologies using organic structure directing agents (OSDAs), and the compositions and structures resulting from these methods.
Abstract:
Compositions and methods for preparing mesoporous and/or mesostructured materials from low SAR zeolites are provided herewith. In particular, methods are provided that involve: (a) providing a low SAR zeolite, (b) optionally subjecting the low SAR zeolite to an acid framework modification, and (c) subjecting the framework-modified zeolite to a mesopore formation treatment. The resulting mesoporous zeolites can have bi-modal mesoporosity and higher aluminum contents relative to existing mesoporous zeolites.
Abstract:
A method is disclosed for synthesizing zeolite SSZ-52 in the presence of an organic structure directing agent having the following structure (1): wherein R1, R2, R3 and R4 are independently selected from the group consisting of alkyl groups having from 1 to 3 carbon atoms and n has a value of 0, 1 or 2.
Abstract:
A process for producing a VET-type zeolite is provided in which the use of a structure-directing agent is minimized and the environmental burden can be minimized. This process for producing a VET-type zeolite comprises (1) mixing a zinc source, an element M1 source, an alkali source, and water so as to result in a reaction mixture having a specific composition in terms of molar ratio, (2) using, as seed crystals, a VET-type zeolite which has an M1O2/ZnO ratio of 5-30 and adding the zeolite to the reaction mixture in an amount of 0.1-30 wt % relative to the M1O2 contained in the reaction mixture, and (3) heating the reaction mixture to which the seed crystals have been added, at 80-200° C. in a hermetically closed state. M1 represents silicon or a mixture of silicon and germanium.
Abstract:
The present invention relates to an SCM-10 molecular sieve, a process for producing same and use thereof. The molecular sieve has an empirical chemical composition as illustrated by the formula “the first oxide·the second oxide”, wherein the ratio by molar of the first oxide to the second oxide is less than 40, the first oxide is at least one selected from the group consisting of silica and germanium dioxide, the second oxide is at least one selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, titanium oxide, rare earth oxides, indium oxide and vanadium oxide. The molecular sieve has specific XRD pattern and can be used as an adsorbent or a catalyst for converting an organic compound.
Abstract:
Process for the direct synthesis of Cu-SSZ-13 from a synthesis mixture comprising water, at least one silicon source, at least one Al source, at least one Cu source, at least one polyamine for complexing with Cu, and a single organic structure directing agent. A Cu containing molecular sieve having the framework structure of SSZ-13, obtainable by the process and use of the Cu containing molecular sieve.