Abstract:
Novel 1-oxa-4-azonium cyclohexane salts are described. These compounds can be used as structure directing agents, and they overcome many of the typical problems associated with OSDA synthesis and subsequent zeolite synthesis. Methods for synthesis of the 1-oxa-4-azonium cyclohexane salts from a variety of starting materials are also described. A substituted hydrocarbon is added to water to form a mixture, and a 1-oxa-4-azacyclohexane derivative is then added. The reaction mixture stirred until a solution containing the 1-oxa-4-azonium cyclohexane salt is obtained.
Abstract:
Novel 1-oxa-4-azonium cyclohexane salts are described. These compounds can be used as structure directing agents, and they overcome many of the typical problems associated with OSDA synthesis and subsequent zeolite synthesis. Methods for synthesis of the 1-oxa-4-azonium cyclohexane salts from a variety of starting materials are also described. A substituted hydrocarbon is added to water to form a mixture, and a 1-oxa-4-azacyclohexane derivative is then added. The reaction mixture stirred until a solution containing the 1-oxa-4-azonium cyclohexane salt is obtained.
Abstract:
Isomerization processes such as the isomerization of ethylbenzene and xylenes, are catalyzed by the new crystalline aluminosilicate zeolite comprising a novel framework type that has been designated UZM-55. This zeolite is represented by the empirical formula: M+mRAl1-xExSiyOz where M represents a metal or metals selected from zinc or Group 1 (IUPAC 1), Group 2 (IUPAC 2), Group 3 (IUPAC 3) or the lanthanide series of the periodic table including sodium, potassium or a combination of sodium and potassium cations, R is an organic structure directing agent or agents derived from reactants R1 and R2 such as where R1 is diisopropanolamine and R2 is a chelating diamine, and E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof. Catalysts made from UZM-55 have utility in various hydrocarbon conversion reactions.
Abstract:
A new crystalline aluminosilicate zeolite comprising a MTT framework has been synthesized that has been designated UZM-53. This zeolite is represented by the empirical formula: M+mRrAl1-xExSiyOz where M represents sodium, potassium or a combination of sodium and potassium cations, R is the organic structure directing agent or agents derived from reactants R1 and R2 where R1 is diisopropanolamine and R2 is a chelating diamine, and E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof. Catalysts made from UZM-53 have utility in various hydrocarbon conversion reactions.
Abstract:
A new crystalline aluminosilicate zeolite comprising a MTT framework has been synthesized that has been designated UZM-55. This zeolite is represented by the empirical formula: M+mRrAl1-xExSiyOz where M represents a metal or metals selected from zinc or Group 1 (IUPAC 1), Group 2 (IUPAC 2), Group 3 (IUPAC 3) or the lanthanide series of the periodic table including sodium, potassium or a combination of sodium and potassium cations, R is an organic structure directing agent or agents derived from reactants R1 and R2 such as where R1 is diisopropanolamine and R2 is a chelating diamine, and E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof. Catalysts made from UZM-55 have utility in various hydrocarbon conversion reactions.
Abstract:
A new crystalline aluminosilicate zeolite comprising a MTT framework has been synthesized that has been designated UZM-53. This zeolite is represented by the empirical formula: M+mRrAl1-xExSiyOz where M represents sodium, potassium or a combination of sodium and potassium cations, R is the organic structure directing agent or agents derived from reactants R1 and R2 where R1 is diisopropanolamine and R2 is a chelating diamine, and E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof. Catalysts made from UZM-53 have utility in various hydrocarbon conversion reactions such as oligomerization.
Abstract:
A method for synthesizing a zeolite is described. The method may include the steps of: (a) preparing an aqueous mixture comprising water, a substituted hydrocarbon, and a 1-oxa-4-azacyclohexane derivative; (b) reacting the aqueous mixture; (c) obtaining a solution comprising an organo-1-oxa-4-azoniumcyclohexane compound; (d)) forming a reaction mixture comprising reactive sources of Al, and Si, and the solution; and (e) heating the reaction mixture to form the zeolite.
Abstract:
A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
Abstract:
A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
Abstract:
A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for aromatic transformation reactions. These zeolites are represented by the empirical formula: NanMmk+TtAll-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents at least one meta, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, “t” is the mole ratio of N from the organic structure directing agent or agents to (Al+E), and E is a framework element such as gallium. The process involves contacting at least a first aromatic with the coherently grown composites of TUN and IMF zeotypes to produce at least a second aromatic.