Abstract:
The present disclosure is directed to methods of producing zincoaluminosilicate structures with AEI, CHA, and GME topologies using organic structure directing agents (OSDAs), and the compositions and structures resulting from these methods.
Abstract:
Provided are processes for monitoring and maintaining continuous carbonylation of epoxides or lactones. Processes include measuring parameters affecting the rate of the carbonylation reaction and adding supplemental replacement catalyst replacement components to maintain a constant rate of carbonylation.
Abstract:
The invention relates to a process for doubly carbonylating allyl ethers to the corresponding diesters, wherein a linear or branched allyl ether is reacted with a linear or branched alkanol (alcohol) with supply of CO and in the presence of a catalytic system composed of a palladium complex and at least one organic phosphorus ligand and in the presence of a hydrogen halide selected from HCl, HBr and HI.
Abstract:
A process for removing acetaldehyde from a mixture of methyl acetate, dimethyl ether and acetaldehyde comprising distilling mixtures derived from carbonylating dimethyl ether in the presence of a zeolite catalyst to generate an overhead stream depleted in acetaldehyde as compared to the feed mixture, a base stream depleted in acetaldehyde as compared to the feed mixture and a sidedraw stream enriched in acetaldehyde as compared to the feed mixture and withdrawing from the column the sidedraw stream enriched in acetaldehyde at a point above the feed point of the feed mixture to the column. Purified mixtures may be utilised as feedstock to processes for the co-production of acetic acid and dimethyl ether.
Abstract:
This invention relates to a process for producing ethanol comprises supplying a feed comprising carbon monoxide, hydrogen and dimethyl ether to a reaction zone operated under conditions such that (i) part of the carbon monoxide in the feed reacts with part of the hydrogen in the feed to produce methanol; (ii) part of the carbon monoxide in the feed reacts with at least part of the dimethyl ether in the feed to produce methyl acetate; and (iii) part of the hydrogen in the feed reacts with at least part of the methyl acetate produced in (ii) to produce an effluent comprising methanol and ethanol. At least part of the ethanol is recovered from the effluent and at least part of the methanol is dehydrated to produce dimethyl ether, which is recycled to the reaction zone.
Abstract:
The present disclosure is directed to producing zeolite structures, especially Zeolite SSZ-39, using organic structure directing agents (OSDAs). In particular, the OSDAs comprise isomeric mixtures of N,N-dialkyl piperidinium cations.
Abstract:
An integrated process for the production of methyl acetate and methanol by carbonylating dimethyl ether with synthesis gas, recovering methyl acetate and unreacted synthesis gas and supplying unreacted synthesis gas and fresh synthesis gas for methanol synthesis.
Abstract:
Process for the production of methyl acetate and/or acetic acid by contacting a carbon monoxide-containing gas and methanol and/or reactive derivatives thereof with a mordenite loaded with copper and silver loaded by ion-exchange and subsequently regenerating the catalyst.
Abstract:
A method of producing methyl acetate from methanol in which methanol and carbon monoxide are reacted in a first reaction zone to provide a reaction product including methyl acetate, acetic acid, and unreacted methanol. The reaction product then is passed to a second reaction zone, wherein the acetic acid is reacted with the unreacted methanol to provide additional methyl acetate. The method is a more efficient method for producing methyl acetate from methanol in that acetic acid is not separated from the reaction product.
Abstract:
A process for the production of methyl acetate by reacting dimethyl ether with carbon monoxide into a carbonylation reactor containing a mordenite catalyst in the presence of added methyl acetate and/or acetic acid.