Abstract:
Catalyst regeneration processes that include measures for controlling emissions generated during the regeneration are described. The present invention further relates to catalytic processes for producing various chlorinated aromatic compounds that include provisions for controlling emissions during catalyst regeneration.
Abstract:
The present disclosure relates to an improved, environmentally friendly, process for producing compounds such as hydroquinone (benzene-1,4-diol) and its derivatives. The process can be carried out at ambient temperature and pressure using a recyclable copper catalyst and recyclable intermediate materials. The process generally entails reacting an aromatic compound such as benzene with hydrogen peroxide in the present of a pure elemental copper catalyst or a copper (I) salt catalyst to form oxidation product such as benzoquinone, and reducing the compound to hydroquinone or a hydroquinone derivative.
Abstract:
[Problem] To provide a process for producing an aromatic dihydroxy compound, in which a hydroquinone compound is highly selectively produced while suppressing formation of by-products derived from a solvent and maintaining a high yield based on hydrogen peroxide when a phenol compound is allowed to react with hydrogen peroxide. [Solution]A process for producing an aromatic dihydroxy compound, including allowing a phenol compound to react with hydrogen peroxide in the presence of a titanosilicate, a C4-C5 alcohol containing a tertiary or quaternary carbon, and water and/or methanol, the amount of the water and/or methanol being 5 to 90 mass % based on the total mass of the reaction liquid.
Abstract:
The present invention provides a method for converting an aromatic hydrocarbon to a phenol by providing an aromatic hydrocarbon comprising one or more aromatic C—H bonds and one or more activated C—H bonds in a solvent; adding a phthaloyl peroxide to the solvent; converting the phthaloyl peroxide to a di-radical; contacting the di-radical with the one or more aromatic C—H bonds; oxidizing selectively one of the one or more aromatic C—H bonds in preference to the one or more activated C—H bonds; adding a hydroxyl group to the one of the one or more aromatic C—H bonds to form one or more phenols; and purifying the one or more phenols.
Abstract:
Disclosed herein are processes for preparing procatalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present procatalyst compositions improve catalyst selectivity and also increase the bulk density of the formant polymer.
Abstract:
Disclosed herein are processes for preparing procatalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present procatalyst compositions improve catalyst selectivity and also increase the bulk density of the formant polymer.
Abstract:
A method for hydroxylating phenols and phenol ethers using hydrogen peroxide and specifically, a method for hydroxylating phenol using hydrogen peroxide. The method for hydroxylating a phenolic substrate selected from a phenol or a phenol ether by reacting such phenolic substrate with hydrogen peroxide in the presence of an acid catalyst comprises the following steps, implemented consecutively or simultaneously: a first step consisting of mixing a phenolic substrate with a hydrogen peroxide solution under conditions in which the temperature is sufficient for the initial phenolic substrate to remain liquid and for minimizing the conversion rate of the hydrogen peroxide; a second step consisting of carrying out the phenolic substrate hydroxylation reaction under adiabatic conditions, the acid catalyst being added at the mixing stage and/or at the beginning of the hydroxylation reaction; and a third step, if necessary, consisting of recovering the hydroxylated product.
Abstract:
Phenol is formed by reaction of oxidant and benzene over a solid catalyst such as Pd on TS-1, the reaction being carried out in carbon dioxide solvent at conditions effective to provide a dense phase reaction mixture.
Abstract:
A method of reacting chemicals comprising the exposure of the reactants to ultrasound and electrochemical energies in the presence of a metal or metal salt and hydrogen peroxide. HO* radicals are efficiently formed and react with a carbon-based reactant to form a carbon radical which then reacts with other reactants or may dimerize. The invention regenerates the metal ions and may be performed using no special facilities. Increased product yield was achieved for a number of hydroxylation reactions.
Abstract translation:包括在金属或金属盐和过氧化氢的存在下将反应物暴露于超声和电化学能的化学反应的方法。 HO *自由基被有效地形成并与碳基反应物反应形成碳自由基,然后与其它反应物反应或可以二聚化。 本发明再生金属离子,并且可以不使用专门的设备进行。 实现了许多羟化反应的产物产率提高。
Abstract:
A method and a catalyst are described for selective oxidation of aromatic compounds (e.g., benzene and its derivatives) into hydroxylated aromatic compounds (e.g., corresponding phenols). For example, benzene can be converted into phenol with a yield of at least 30-40%, and a selectivity on the basis of benzene of at least 95-97%. The selectivity for this reaction based on N2O is at least 90-95%. Therefore, no substantial N2O decomposition or consumption for complete benzene oxidation to CO+CO2 or other side products occurs. Similar results are obtained with benzene derivatives (e.g., fluorobenzene, difluorobenzene, phenol), although the selectivity is somewhat lower in the case of derivatives (e.g., about 80-85% in the case of fluorosubstituted benzenes). A preferred catalyst for this process is a composition containing a high-silica pentasil-type zeolite (e.g, an HZSM-5 type zeolite) which contains no purposefully introduced additives such as transition or noble metals. The catalytic effect is achieved by performing a specific zeolite modification with strong Lewis acid-base centers of a specific nature. This modification can be achieved by a pretreatment comprising two steps: a first conventional calcination step at 300-600° C., and a second high-temperature calcination step at 600-950° C.