摘要:
A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate, and a heater element on the semiconductor substrate, the heater element configured to generate heat in response to a current flowing therethrough. The semiconductor device also includes a conductor material having a programmable conductivity, and an insulator layer between the heater element and the conductor material, where the conductor material is configured to be programmed by applying one or more voltage differences to one or more of the heater element and the conductor material, and where a capacitance between the conductor material and the heater element is configured to be controlled by the voltage differences such that the capacitance is lower while the conductor material is being programmed than while the conductor material is not being programmed.
摘要:
A method of forming a memory device according to the present disclosure includes forming a trench in a first substrate of a first wafer, depositing a data-storage element in the trench, performing a thermal treatment to the first wafer to improve a crystallization in the data-storage element, forming a first redistribution layer over the first substrate, forming a transistor in a second substrate of a second wafer, forming a second redistribution layer over the second substrate, and bonding the first wafer with the second wafer after the performing of the thermal treatment. The data-storage element is electrically coupled to the transistor through the first and second redistribution layers.
摘要:
The present disclosure describes a method of forming a memory device. The method includes receiving a wafer substrate, forming a poly stack pattern on the wafer substrate, performing an ion implantation process to form a source and a drain in the wafer substrate, forming a memory gate and a control gate in the defined poly stack pattern, and forming a control gate in the control poly stack pattern. Forming the memory gate further includes performing a memory gate recess to bury the memory gate in an oxide layer.
摘要:
A memory cell with a decoupled read/write path includes a switch comprising a first terminal connected to a first line and a second terminal connected to a second line, a resistive switching device connected between a gate of the switch and a third line, and a conductive path between the gate of the switch and the second line.
摘要:
The present disclosure provides one embodiment of a method for operating a resistive random access memory (RRAM) cell. The method includes performing a forming operation to the RRAM cell with a forming voltage; performing a number of set/reset operation cycles to the RRAM cell; and performing a recreating process to the RRAM cell to recover RRAM resistance by applying a recreating voltage. Each of the number of set/reset operation cycles includes a set operation with a set voltage. The recreating voltage is greater than the set voltage.
摘要:
The present disclosure provides one embodiment of a method for operating a resistive random access memory (RRAM) cell. The method includes performing a forming operation to the RRAM cell with a forming voltage; performing a number of set/reset operation cycles to the RRAM cell; and performing a recreating process to the RRAM cell to recover RRAM resistance by applying a recreating voltage. Each of the number of set/reset operation cycles includes a set operation with a set voltage. The recreating voltage is greater than the set voltage.
摘要:
Various embodiments of the present disclosure are directed towards an integrated chip comprising a ferroelectric structure disposed between a first conductive interconnect structure and a second conductive interconnect structure. The first conductive interconnect structure overlies a substrate. The second conductive interconnect structure overlies the first conductive interconnect structure. The second conductive interconnect structure comprises a conductive wire segment directly overlying a conductive via segment. The ferroelectric structure continuously extends along opposing sidewalls and a bottom surface of the conductive wire segment and along opposing sidewalls and a bottom surface of the conductive via segment
摘要:
A semiconductor device according to embodiments of the present disclosure includes a first die including a first bonding layer and a second die including a second hybrid bonding layer. The first bonding layer includes a first dielectric layer and a first metal coil embedded in the first dielectric layer. The second bonding layer includes a second dielectric layer and a second metal coil embedded in the second dielectric layer. The second hybrid bonding layer is bonded to the first hybrid bonding layer such that the first dielectric layer is bonded to the second dielectric layer and the first metal coil is bonded to the second metal coil.
摘要:
A cell array of a memory device includes: a first deck of memory cells arranged in a first row and a second row extending in a first horizontal direction and a plurality of columns extending in a second horizontal direction, wherein the memory cells in the second row in the first deck is displaced in the first horizontal direction with respect to the memory cells in the first row in the first deck; a first common word line metal track extending in the first horizontal direction, wherein both the memory cells in the first row and the memory cells in the second row are disposed on the first common word line metal track; and a plurality of first bit line metal tracks extending in the second horizontal direction, wherein each of the plurality of first bit line metal tracks is disposed on one of the first deck of memory cells.
摘要:
In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes forming a reactivity reducing coating over one or more lower interconnect layers disposed over a substrate. A bottom electrode layer is formed on and in contact with the reactivity reducing coating. The bottom electrode layer has a first electronegativity that is less than or equal to a second electronegativity of the reactivity reducing coating. A data storage element is formed over the bottom electrode layer and a top electrode layer is formed over the data storage element. The top electrode layer, the data storage element, the reactivity reducing coating, and the bottom electrode layer are patterned to define a memory device.