摘要:
A method is disclosed for tailoring the thermoelectric response of a thermocouple to that desired by a user. The method comprises the steps of; (a) selecting a first thermoelectric material, (b) selecting a second thermoelectric material having dissimilar thermoelectric properties to the first thermoelectric material, a thermocouple formed from the first thermoelectric material and the second thermoelectric material having a known thermoelectric response, and (c) modifying the chemical composition of at least one of the first thermoelectric material and the second thermoelectric material to produce a thermocouple having a tailored thermoelectric response. In specific embodiments, the chemical composition may be modified by selectively depleting one or more chemical elements from the thermoelectric material or by selectively adding, or increasing the proportion of, one or more elements to the thermoelectric material.
摘要:
A thermoelectric conversion device includes a stack in which a first perovskite dielectric film, which includes Sr and Ti and has a first bandgap, and a second perovskite dielectric film, which includes Sr and Ti and has a second bandgap smaller than the first bandgap, are stacked alternately, each of the first and second perovskite dielectric films being doped to have an electric conductivity, the first and the second perovskite dielectric films having respective compositions such that there appears a bandoffset of 0.54 eV in maximum between a conduction band of the first perovskite dielectric film and a conduction band of the second perovskite dielectric film.
摘要:
A thermoelectric material includes a stack structure including alternately stacked first and second material layers. The first material layer may include a carbon nano-material. The second material layer may include a thermoelectric inorganic material. The first material layer may include a thermoelectric inorganic material in addition to the carbon nano-material. The carbon nano-material may include, for example, graphene. At least one of the first and second material layers may include a plurality of nanoparticles. The thermoelectric material may further include at least one conductor extending in an out-of-plane direction of the stack structure.
摘要:
An electrically conductive composite material that includes an electrically conductive polymer, and at least one metal nanoparticle coated with a protective agent, wherein said protective agent includes a compound having a first part that has at least part of the molecular backbone of said electrically conductive polymer and a second part that interacts with said at least one metal nanoparticle.
摘要:
An adverse event-resilient network system consisting of autonomously powered and mobile nodes in communication with each other either through radio, light or other electromagnetic signals or through a physical connection such as through wiring, cables or other physical connected methods capable of carrying information and communication signals. The nodes powered by an energy generator comprising multiple data, information and voice gathering, receiving and emitting devices as well as mechanical, optical and propulsion devices.
摘要:
A thermoelectric material having a high ZT value is provided. In general, the thermoelectric material is a thin film thermoelectric material that includes a heterostructure formed of IV-VI semiconductor materials, where the heterostructure includes at least one potential barrier layer. In one embodiment, the heterostructure is formed of IV-VI semiconductor materials and includes a first matrix material layer, a potential barrier material layer adjacent to the first matrix material layer and formed of a wide bandgap material, and a second matrix material layer that is adjacent the potential barrier material layer opposite the first matrix material layer. A thickness of the potential barrier layer is approximately equal to a mean free path distance for charge carriers at a desired temperature.
摘要:
A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate, and a heater element on the semiconductor substrate, the heater element configured to generate heat in response to a current flowing therethrough. The semiconductor device also includes a conductor material having a programmable conductivity, and an insulator layer between the heater element and the conductor material, where the conductor material is configured to be programmed by applying one or more voltage differences to one or more of the heater element and the conductor material, and where a capacitance between the conductor material and the heater element is configured to be controlled by the voltage differences such that the capacitance is lower while the conductor material is being programmed than while the conductor material is not being programmed.
摘要:
A resilient power-communications network system consisting of autonomously powered and mobile nodes in communication with each other either through radio, light or other electromagnetic signals or through a physical connection such as through wiring, cables or other physical connected methods capable of carrying information and communication signals and the sharing of the power load amongst the nodes. The nodes powered energy generators comprising multiple data, information and voice gathering, receiving and emitting devices as well as mechanical, optical and propulsion devices.