Abstract:
Configurable central processing unit (CPU) package substrates are disclosed. A package substrate is described that includes a processing device interface. The package substrate also includes a memory device electrical interface disposed on the package substrate. The package substrate also includes a removable memory mechanical interface disposed proximately to the memory device electrical interface. The removable memory mechanical interface is to allow a memory device to be easily removed from the package substrate after attachment of the memory device to the package substrate.
Abstract:
This disclosure relates generally to an electronic package and methods that include an electrically conductive pad, a package insulator layer including a substantially non-conductive material, the package insulator layer being substantially planar, and a via. The via may be formed within the package insulator layer and electrically coupled to the electrically conductive pad. The via may include a conductor extending vertically through at least part of the package insulator layer and having a first end proximate the electrically conductive pad and a second end opposite the first end and a finish layer secured to the second end of the conductor, the finish layer including a gold compound.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations associated with a package load assembly. In one embodiment, a package load assembly may include a frame configured to form a perimeter around a die area of a package substrate having a first surface configured to be coupled with a surface of the package substrate and a second surface disposed opposite to the first surface. The frame may include deformable members disposed on the second surface, which may be configured to be coupled with a base of a heat sink to distribute force applied between the heat sink and the package substrate, via the frame, and may deform under application of the force, which may allow the base of the heat sink to contact a surface of an integrated heat spreader within the die area of the package substrate.
Abstract:
Embodiments of the present disclosure are directed to an interconnect cable including a edge finger connector, and associated configurations and methods. The edge finger connector may be disposed at a first end of the interconnect cable and may connect the interconnect cable to an edge finger included in or coupled to a package substrate. The package substrate may be included in a processor package assembly, and a processor may be mounted on the substrate. The interconnect cable may include one or more elongate conductors, with contacts directly coupled to respective conductors. A second connector may be disposed at a second end of the interconnect cable, and may couple the interconnect cable to a small form-factor pluggable (SFP) case that is configured to connect the interconnect cable to an SFP cable. Other embodiments may be described and claimed.
Abstract:
The present disclosure relates to the field of fabricating microelectronic packages, wherein components of the microelectronic packages may have magnetic attachment structures comprising a magnetic component and a metal component. The magnetic attachment structure may be exposed to a magnetic field, which, through the vibration of the magnetic component, can heat the magnetic attachment structure, and which when placed in contact with a solder material can reflow the solder material and attach microelectronic components of the microelectronic package.
Abstract:
An electronic assembly, and a method for making the electronic assembly, includes a first electronic component, a second electronic component, and a plurality of interconnects. The plurality of interconnects electrically couple the first electronic component to the second electronic component. Each of the plurality of interconnects comprise one of a plurality of first magnetic components in physical alignment with an associated one of a plurality of second magnetic components, the plurality of second magnetic components being components of one of the second electronic component and the plurality of interconnects.
Abstract:
Embodiments of the present disclosure provide techniques for a printed circuit board (PCB) with a recess to accommodate discrete components of a package attachable to the PCB, in accordance with some embodiments. In one embodiment, a PCB may include a recess disposed in at least a portion of the PCB, to receive at least a portion of a package. The package may be attachable to the PCB via a plurality of connectors. The connectors may be disposed on a side of the package that faces the PCB. The portion of the package may include one or more discrete components disposed on the side of the package that faces the PCB. The recess may have a depth to accommodate those discrete components that have a height that is greater than a height of the connectors. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations associated with a package load assembly. In one embodiment, a package load assembly may include a frame configured to form a perimeter around a die area of a package substrate having a first surface configured to be coupled with a surface of the package substrate and a second surface disposed opposite to the first surface. The frame may include deformable members disposed on the second surface, which may be configured to be coupled with a base of a heat sink to distribute force applied between the heat sink and the package substrate, via the frame, and may deform under application of the force, which may allow the base of the heat sink to contact a surface of an integrated heat spreader within the die area of the package substrate.
Abstract:
Embodiments of the present disclosure are directed towards a snap connector for socket assembly and associated techniques and configurations. In one embodiment, a socket assembly includes a socket body having a plurality of openings extending from a first side of the socket body to a second side of the socket body to provide an electrical pathway between the first side and the second side, the second side disposed opposite to the first side, wherein a holding portion of an individual opening of the plurality of openings adjacent to the first side of the socket body is shaped to hold a corresponding electrical contact of a die package by elastic force applied by the socket body to the electrical contact when the electrical contact is positioned within the holding portion. Other embodiments may be described and/or claimed.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include attaching a device to a patch substrate, wherein the assembled device and patch substrate comprise a warpage, attaching the assembled device and patch substrate to an interposer to form a package structure, and then reflowing the package structure at a temperature below about 200 degrees Celsius to form a substantially flat package structure.