Abstract:
A rework grid array interposer with direct power is described. The interposer has a foundation layer mountable between a motherboard and a package. A heater is embedded in the foundation layer to provide local heat to reflow solder to enable at least one of attachment or detachment of the package. A connector is mounted on the foundation layer and coupled to the heater and to the package to provide a connection path directly with the power supply and not via the motherboard. One type of interposer interfaces with a package having a solderable extension. Another interposer has a plurality of heater zones embedded in the foundation layer.
Abstract:
Configurable central processing unit (CPU) package substrates are disclosed. A package substrate is described that includes a processing device interface. The package substrate also includes a memory device electrical interface disposed on the package substrate. The package substrate also includes a removable memory mechanical interface disposed proximately to the memory device electrical interface. The removable memory mechanical interface is to allow a memory device to be easily removed from the package substrate after attachment of the memory device to the package substrate.
Abstract:
A connector for a multi-array bottom side array is described that uses a spring bias. In one example, a connector includes a connector housing, the connector housing having a bottom surface, and a plurality of resilient connectors opposite the bottom surface to electrically connect to a corresponding plurality of pads of an integrated circuit package, a cable connector to electrically connect the resilient connectors to a cable, a base plate having a bottom surface to press against a circuit board, and a top surface opposite the bottom surface, and plurality of spring members coupled between the base plate and the connector bottom surface to press the base plate bottom surface against the system board and to press the connector housing connectors against the package.
Abstract:
A connector for a multi-array bottom side array is described that uses a spring bias. In one example, a connector includes a connector housing, the connector housing having a bottom surface, and a plurality of resilient connectors opposite the bottom surface to electrically connect to a corresponding plurality of pads of an integrated circuit package, a cable connector to electrically connect the resilient connectors to a cable, a base plate having a bottom surface to press against a circuit board, and a top surface opposite the bottom surface, and plurality of spring members coupled between the base plate and the connector bottom surface to press the base plate bottom surface against the system board and to press the connector housing connectors against the package.
Abstract:
Connectors and methods to couple packages and dies are shown. Selected examples include plugs and receptacles having two or more terraces with contacts provided along the terraces. Examples of connectors and methods include configurations where the connector is usable with a package including a die coupled along a substrate. In selected examples a heat sink is coupled over the die, and a package includes a side access port between the heat sink and the substrate configured to receive the connector, such as one or more of a plug or receptacle through the side access port.
Abstract:
Configurable central processing unit (CPU) package substrates are disclosed. A package substrate is described that includes a processing device interface. The package substrate also includes a memory device electrical interface disposed on the package substrate. The package substrate also includes a removable memory mechanical interface disposed proximately to the memory device electrical interface. The removable memory mechanical interface is to allow a memory device to be easily removed from the package substrate after attachment of the memory device to the package substrate.
Abstract:
Embodiments of the present disclosure are directed towards a socket loading element and associated techniques and configurations. In one embodiment, an apparatus may include a loading element configured to transfer a compressive load from a heat spreader to a socket assembly, wherein the loading element is configured to form a perimeter around a die when the loading element is coupled with an interposer disposed between the die and the socket assembly and wherein the loading element includes an opening configured to accommodate the die. Other embodiments may be described and/or claimed.
Abstract:
Connectors and methods to couple packages and dies are shown. Selected examples include plugs and receptacles having two or more terraces with contacts provided along the terraces. Examples of connectors and methods include configurations where the connector is usable with a package including a die coupled along a substrate. In selected examples a heat sink is coupled over the die, and a package includes a side access port between the heat sink and the substrate configured to receive the connector, such as one or more of a plug or receptacle through the side access port.
Abstract:
Connectors and methods to couple packages and dies are shown. Selected examples include plugs and receptacles having two or more terraces with contacts provided along the terraces. Examples of connectors and methods include configurations where the connector is usable with a package including a die coupled along a substrate. In selected examples a heat sink is coupled over the die, and a package includes a side access port between the heat sink and the substrate configured to receive the connector, such as one or more of a plug or receptacle through the side access port.
Abstract:
Embodiments of the present disclosure are directed towards a socket loading element and associated techniques and configurations. In one embodiment, an apparatus may include a loading element configured to transfer a compressive load from a heat spreader to a socket assembly, wherein the loading element is configured to form a perimeter around a die when the loading element is coupled with an interposer disposed between the die and the socket assembly and wherein the loading element includes an opening configured to accommodate the die. Other embodiments may be described and/or claimed.