Abstract:
A slotted pin tool, a delivery system containing the pin tool, a substrate for use in the system and methods using the pin tool and system are provided. The slotted pin tool contains a plurality of pins having slotted ends designed to fit around each loci of material deposited on a surface, such as a microarray, without contacting any of the deposited material. Sample is delivered by contacting the pin tool with the surface; the amount delivered is proportional to the velocity of the pin tool as it contacts the surface or the velocity of the liquid when movement of the pin is halted.
Abstract:
The invention provides arrays of compound for use in profiling samples. The arrays include compounds bind to components of the samples at relatively low affinities. The avidity of compounds binding to components of the samples can be increased by forming arrays such that multivalent components of the samples (e.g., antibodies or cells) can bind to more than one molecule of a compound at the same time. When a sample is applied to an array under such conditions, the compounds of the array bind to component(s) of the sample with significantly different avidities generating a profile characteristic of the sample.
Abstract:
Focused libraries of vectors or genetic packages that display, display and express, or comprise a member of a diverse family of antibody peptides, polypeptides or proteins and collectively display, display and express, or comprise at least a portion of the focused diversity of the family. The libraries have length and sequence diversities that mimic that found in native human antibodies.
Abstract:
Disclosed herein are expression vectors which display a passenger polypeptide on the outer surface of a biological entity. As disclosed herein the displayed passenger polypeptide is capable of interacting or binding with a given ligand. Also disclosed are methods of making and using the expression vectors. N/C terminal fusion expression vectors and methods of making and using are also disclosed.
Abstract:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
Abstract:
In a multiplexed assay, each molecule of a plurality of molecules is attached to a support matrix with a substrate adapted for attachment and/or synthesis of molecules and an integrally-formed memory device with an optically-encoded identifier to uniquely identify the molecule attached to the substrate. The molecules are exposed to one or more processing conditions then placed within the path of an optical detector adapted to read the optically-encoded identifier and measure biochemical processes on each support matrix. The support matrices may be singulated to be read by the optical detector one at a time.
Abstract:
This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
Abstract:
The invention relates to a method for modifying one or more peptide ligands, comprising polypeptides covalently linked to a molecular scaffold at two or more amino acid residues, comprising the steps of providing one or more peptide ligands, wherein the polypeptide comprises two or more reactive groups which form a covalent linkage to the molecular scaffold, and at least one loop which comprises a sequence of two or more amino acids subtended between two of said reactive groups; exposing the peptide ligands to one or more proteases; and sorting the ligands according to the extent of proteolytic cleavage.
Abstract:
The invention concerns constructs and libraries comprising antibody surrogate light chain sequences. In particular, the invention concerns constructs comprising VpreB sequences, optionally partnered with another polypeptide, such as, for example, antibody heavy chain variable domain sequences, and libraries containing the same.
Abstract:
A simple, efficient apparatus and method for separating layers of immiscible or partially miscible liquids useful in methods of high-throughput combinatorial organic synthesis or parallel extraction of large libraries or megaarrays of organic compounds is disclosed. The apparatus and method are useful, whether as part of an automated, robotic or manual system for combinatorial organic synthesis or purification (extraction). In a preferred embodiment, an apparatus and method for separating layers of immiscible or partially miscible liquids compatible with microtiter plate type array(s) of reaction vessels is disclosed. Another application of centrifugation based liquid removal was found for washing the plates in biological assays or synthesis on modified substrates.