Abstract:
This disclosure provides compositions and methods for high throughput screening, selecting, and identifying antibodies or antibody-like molecules that bind to a target integral membrane protein.
Abstract:
Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.
Abstract:
The present invention provides compositions including peptide display scaffolds that present at least one candidate peptide and at least one detectable moiety in at least one of the N-terminal and C-terminal candidate peptide presenting domains that when expressed in a cell are accessible at a surface of the cell outermembrane. In addition, the present invention also provides kits and methods for screening a library of cells presenting the candidate peptides in peptide display scaffolds to identify a ligand for an enzyme.
Abstract:
Walk-through mutagenesis and natural-variant combinatorial fibronectin Type III (FN3) polypeptide libraries are described, along with their method of construction and use. Also disclosed are a number of high binding affinity polypeptides selected by screening the libraries against a variety of selected antigens.
Abstract:
The invention pertains to a natural-variant combinatorial library of fibronectin Type 3 domain (Fn3) polypeptides useful in screening for the presence of one or more polypeptides having a selected binding or enzymatic activity. The library polypeptides include (a) regions A, AB, B, C, CD, D, E, EF, F, and G having wildtype amino acid sequences of a selected native fibronectin Type 3 polypeptide or polypeptides, and (b) loop regions AB, CD, and EF having selected lengths (Bottom Loops). The Fn3 may also have loop regions BC, DE, and FG having wildtype amino acid sequences, having selected lengths, or mutagenized amino acid sequences (Top Loops).
Abstract:
The present invention provides compositions including peptide display scaffolds that present at least one candidate peptide and at least one detectable moiety in at least one of the N-terminal and C-terminal candidate peptide presenting domains that when expressed in a cell are accessible at a surface of the cell outermembrane. In addition, the present invention also provides kits and methods for screening a library of cells presenting the candidate peptides in peptide display scaffolds to identify a ligand for an enzyme.
Abstract:
A fibronectin type III (Fn3) polypeptide monobody, a nucleic acid molecule encoding said monobody, and a variegated nucleic acid library encoding said monobody, are provided by the invention. Also provided are methods of preparing a Fn3 polypeptide monobody, and kits to perform said methods. Further provided is a method of identifying the amino acid sequence of a polypeptide molecule capable of binding to a specific binding partner (SBP) so as to form a polypeptide:SSP complex, and a method of identifying the amino acid sequence of a polypeptide molecule capable of catalyzing a chemical reaction with a catalyzed rate constant, kcat, and an uncatalyzed rate constant, kuncat, such that the ratio of kcat/kuncat is greater than 10.
Abstract:
Libraries of nucleic acids encoding chimeric binding polypeptides based on plant scaffold polypeptide sequences. Also described are methods for generating the libraries.
Abstract:
The present invention relates to fibronectin based scaffold domain protein that bind interleukin 23 (IL-23), specifically the p19 subunit of IL-23. The invention also relates to the use of the innovative proteins in therapeutic applications to treat autoimmune diseases. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
Abstract:
The present invention generally relates to bacterial polypeptide display systems, libraries using these bacterial display systems, and methods of making and using these systems, including methods for improved display of polypeptides on the extracellular surface of bacteria using circularly permuted transmembrane bacterial polypeptides that have been modified to increase resistance to protease degradation and to enhance polypeptide display characteristics.