Abstract:
An MTP (Many Times Programmable) memory cell for integrated circuit memory arrays is described. The cell includes an MTP device and a thyristor interconnected so that the MTP device triggers the thyristor to turn on during a Read or Verify operation. The difference in threshold voltages between a data memory cell and a reference memory cell is used to determine the information in the data memory cell. Different memory cell structures may be constructed for different memory array requirements.
Abstract:
Memory cells are formed with vertical thyristors to create a volatile memory array. Power consumption in such arrays is reduced or controlled with various techniques including encoding the data stored in the arrays.
Abstract:
An MTP (Many Times Programmable) memory cell for integrated circuit memory arrays is described. The cell includes an MTP device and a thyristor interconnected so that the MTP device triggers the thyristor to turn on during a Read or Verify operation. The difference in threshold voltages between a data memory cell and a reference memory cell is used to determine the information in the data memory cell. Different memory cell structures may be constructed for different memory array requirements.
Abstract:
A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with the thyristor in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM cells.
Abstract:
A thyristor device can be used to implement a variety of semiconductor memory circuits, including high-density memory-cell arrays and single cell circuits. In one example embodiment, the thyristor device includes doped regions of opposite polarity, and a first word line that is used to provide read and write access to the memory cell. A second word line is located adjacent to and separated by an insulative material from one of the doped regions of the thyristor device for write operations to the memory cell, for example, by enhancing the switching of the thyristor device from a high conductance state to a low conductance state and/or from the low conductance state to the high conductance. This type of memory circuit can be implemented to significantly reduce standby power consumption and access time.
Abstract:
A dynamically-operating restoration circuit (106) is used to apply a voltage or current restore pulse signal to thyristor-based memory cells (108) and therein restore data in the cell using the internal positive feedback loop of the thyristor (110). In one example implementation, the internal positive feedback loop in the thyristor (110) is used to restore the conducting state of a device after the thyristor current drops below the holding current. A pulse and/or periodic waveform are defined and applied to ensure that the thyristor is not released from its conducting state. The time average of the periodic restore current in the thyristor may be lower than the holding current threshold. While not necessarily limited to memory cells that are thyristor-based, various embodiments of the invention have been found to be the particularly useful for high-speed, low-power memory cells in which a thin capacitively-coupled thyristor is used to provide a bi-stable storage element.
Abstract:
A method of controlling a negative differential resistance (NDR) element is disclosed, which includes altering various NDR characteristics during operation to effectuate different NDR modes. By changing biasing conditions applied to the NDR element (such as a silicon based NDR FET) a peak-to-valley ratio (PVR) (or some other characteristic) can be modified dynamically to accommodate a desired operational change in a circuit that uses the NDR element. In a memory or logic application, for example, a valley current can be reduced during quiescent periods to reduce operating power. Thus an adaptive NDR element can be utilized advantageously within a conventional semiconductor circuit.
Abstract:
A memory cell according to the present invention comprises a bottom conductor, a doped semiconductor pillar, and a top conductor. The memory cell does not include a dielectric rupture antifuse separating the doped semiconductor pillar from either conductor, or within the semiconductor pillar. The memory cell is formed in a high-impedance state, in which little or no current flows between the conductors on application of a read voltage. Application of a programming voltage programs the cell, converting the memory cell from its initial high-impedance state to a low-impedance state. A monolithic three dimensional memory array of such cells can be formed, comprising multiple memory levels, the levels monolithically formed above one another.
Abstract:
A memory system is organized as a matrix including a memory cell at each intersection of a bit line with write and read word lines. Each memory cell comprises a first FET 20 having its gate coupled to a write word line and its drain coupled to a bit line, a second FET 22 having its source coupled to the bit line and its drain coupled to a read word line, and first and second negative resistnce devices 24,26 coupled in series between a supply voltage and a substrate voltage, the common point SN of the series-connected negative resistance devices being coupled to the source of the first FET and to the gate of the second FET. Preferably, the first FET 20 is a p-channel device, the second FET 22 is an n-channel device, and the first and second negative resistance devices 24,26 are RTDs. In a second embodiment, a memory system has a memory cell at each intersection of a bit line with a word line. The memory cell comprises an FET having its gate coupled to a word line and one of its drain and source electrodes coupled to a bit line, first and second negative resistance devices 44,46 coupled in series between a supply voltage and a substrate voltage, the common point SN of the series-connected negative resistance devices being coupled to the other of the drain and source electrodes, and a capacitance 48 coupled between the common point of the series-connected negative resistance devices.
Abstract:
A logic gate including a resonant-tunneling transistor and a resistor connected in series thereto. The resonant-tunneling transistor has a superlattice structure. The resonant-tunneling transistor may be a resonant-tunneling hot electron transistor or a resonant-tunneling bipolar transistor. The resonant-tunneling transistor conducts a current between a collector and an emitter. The current has one of at least three different current values in response to a base voltage of one of three different voltage values. The third current value is between the first and second current values, and a second voltage value is between the first and third voltage values. The logic gate outputs one of at least three states, a high state, a low state and a state approximately between the high and low states in response to a signal applied to the logic gate. The signal has an amplitude of one of the first to third voltage values. A logic circuit includes at least three connected resonant-tunneling transistors. The logic circuit maintains at least three states, a high state, a low state, and a state approximately between the high and low states in the respective three resonant-tunneling transistors in response to a pulse signal applied to a base of one of the resonant-tunneling transistors.