摘要:
A digital circuit includes at least one quantum wire resonant tunneling transistor that includes an emitter terminal, a base terminal, a collector terminal, an emitter region in connection with the emitter terminal, a base region in connection with the base terminal, a collector region in connection with the collector terminal, an emitter barrier region between the emitter region and the base region, and a collector barrier region between the collector region and the base region. At least one of the emitter region, the base region, and the collector region includes a plurality of metal quantum wires.
摘要:
Described is a level-shifter that can save area between voltage domains with limited voltage differential, and further save power by steering current between two power supply rails. The level-shifter comprises: an input to receive a first signal between a first reference rail and a second reference rail; an output to provide a second signal the first reference rail and a third reference rail, wherein in a voltage level of the third reference rail is higher than a voltage level of the second reference rail, and wherein a voltage level of the first reference is lower than the voltage level of the second reference rail and the third reference rail; and a circuitry coupled to the input and the output, wherein the circuitry is to steer current from the third reference rail to the second reference rail.
摘要:
Various embodiments are described herein for an asymmetrical bus keeper circuit that provides asymmetrical drive towards one logic level. The asymmetrical bus keeper circuit comprises a first inverter stage having an input node and an output node, an asymmetrical inverter stage having an input node and an output node and a feedback stage with an input node and an output node. The input node of the asymmetrical inverter stage is connected to the output node of the first inverter stage. The input node of the feedback stage connected to the output node of the asymmetrical inverter stage and the output node of the feedback stage connected to the input node of the first inverter stage. The asymmetrical stage provides asymmetrical drive towards one logic level.
摘要:
An integrated circuit (IC) includes a functional circuit and a capacitor cell. The functional circuit may operate with one of two power supply voltages. The capacitor cell is used to provide power supply decoupling for the functional circuit, and includes multiple capacitors, each designed to withstand a maximum voltage equal to the lower of the two power supply voltages. When the functional circuit is to operate with the higher of the two power supply voltages, the capacitors in the capacitor cell are coupled in a series arrangement between power supply and ground terminals of the IC. When the functional circuit is to operate with the lower of the two power supply voltages, the capacitors in the capacitor cell are coupled in a parallel arrangement between the power supply and ground terminals. In an embodiment, the functional circuit is an input-output (I/O) circuit powered by 1.8V or 3.3V power supplies.
摘要:
Disclosed herein are circuitry and methods for transmitting data across a parallel bus using both high common mode and low common mode signaling. The transmitter stages are configured to work with two of three possible power supply voltages: a high Vddq voltage, a low Vssq voltage, and an intermediate Vx voltage. In one embodiment, the odd numbered transmitter stages, that drive the odd numbered outputs to the bus, use the Vddq and Vx supplies, such that the odd numbered outputs comprise high common mode signals. The even numbered transmitter stages, that drive the even numbered outputs to the bus, use the Vx and Vssq supplies, such that the even numbered outputs comprise low common mode signals. With the transmitter and power supplies so configured, no one of the three power supplies must source or sink current to or from more than half of the transmitters at any given time, which reduces power supply loading and minimizes switching noise. As a result, use of the technique may dispense with the need to provide power supply isolation at the transmitters.
摘要:
A logic circuit with a simple configuration and good current efficiency is provided. The logic circuit includes a two-terminal bistable switching element (1) having characteristics which maintain states, a first switching element (25) one end of which is connected to one terminal of the two-terminal bistable switching element (1), a second switching element (29) one end of which is connected to the other terminal of the two-terminal bistable switching element (1) via a resistance element (27), and first and second pulse input terminals (33, 37) respectively connected to the one terminal and the other terminal of the two-terminal bistable switching element (1). A bias voltage is applied across the other end of the first switching element (25) and the other end of the second switching element (27), and a trigger pulse is input from the first and second pulse input terminals (33, 37).
摘要:
An input circuit is provided for coupling to a source-synchronous multi-level bus carrying data, clock, and complementary clock signals. The clock and complementary clock signals have a less than full voltage swing than the data signal so they can act as reference voltages for the data signal. The circuit includes a first differential receiver having inputs coupled to the data and the clock signals, a second differential receiver having inputs coupled to the data signal and a reference signal, and a third differential receiver having inputs coupled to the data and the complementary clock signals. The circuit further includes first, second, and third flip-flops having data inputs coupled to outputs of the first, the second, and the third differential receivers, and clock inputs coupled to a delayed clock signal generated from the clock and the complementary clock signals. The outputs of the flip-flops determine the level of the data signal.
摘要:
A normally operable decoder circuit is obtained without entailing a delay in decoding operation, an increase in circuit area, and an increase in circuit design cost. An NMOS transistor in a high-voltage circuit portion is inserted between the output of a NAND gate and a node, and receives an input signal at the gate electrode thereof. A load current generating portion in the high-voltage circuit portion includes PMOS transistors coupled in series between a high power supply voltage and the node. One of the PMOS transistor receives a control signal at the gate electrode thereof. The other PMOS transistor receives a control signal at the gate electrode thereof. An inverter receives a signal obtained from the node as an input signal, and outputs the inverted signal thereof as an output signal.
摘要:
A memory controller and a decoder are provided. The decoder is adapted to the memory controller. The decoder includes a first transistor to a fourth transistor. Gates of the first to the fourth transistor are coupled to a first to a fourth control signal respectively. A first terminal and a second terminal of the first transistor are coupled to a first voltage and a first terminal of the second transistor respectively. First terminals and second terminals of the third transistor and the fourth transistor are coupled to a second terminal of the second transistor and a second voltage respectively. When the first transistor and the second transistor are turned off, a voltage of the second control signal is lower than a voltage of the first control signal. Thereby, a gate-induced drain leakage (GIDL) current of the transistors is reduced.
摘要:
A CMOS output driver is provided for driving a capacitive load over a circuit trace in high speed applications. The CMOS output driver comprises a signal input and a signal output. The output driver has a first buffer amplifier with an input connected to the signal input and an output connected to the signal output through a resistor. A second buffer amplifier is also provided, which has an input connected to the signal input and an output connected to the signal output through a capacitor.