Abstract:
FinFET devices are provided wherein the current path is minimized and mostly limited to spacer regions before the channel carriers reach the metal contacts. The fins in the source/drain regions are metallized to increase the contact area and reduce contact resistance.Selective removal of semiconductor fins in the source/drain regions following source/drain epitaxy facilitates replacement thereof by the metallized fins. A spacer formed subsequent to source/drain epitaxy prevents the etching of extension/channel regions during semiconductor fin removal.
Abstract:
A thermal mixing process is employed to convert a portion of a silicon germanium alloy fin having a first germanium content and an overlying non-doped epitaxial silicon source material into a silicon germanium alloy source structure having a second germanium content that is less than the first germanium content, to convert another portion of the silicon germanium alloy fin and an overlying non-doped epitaxial silicon drain material into a silicon germanium alloy drain structure having the second germanium content, and to provide a tensile strained silicon germanium alloy fin portion having the first germanium content. A dopant is then introduced into the silicon germanium alloy source structure and into the silicon germanium alloy drain structure.
Abstract:
FinFET devices are provided wherein the current path is minimized and mostly limited to spacer regions before the channel carriers reach the metal contacts. The fins in the source/drain regions are metallized to increase the contact area and reduce contact resistance. Selective removal of semiconductor fins in the source/drain regions following source/drain epitaxy facilitates replacement thereof by the metallized fins. A spacer formed subsequent to source/drain epitaxy prevents the etching of extension/channel regions during semiconductor fin removal.
Abstract:
A method of forming CMOS structures with selective tensile strained NFET fins and relaxed PFET fins includes performing a first, partial fin etch on a tensile strained silicon layer of a semiconductor substrate; selectively oxidizing bottom surfaces of the tensile strained silicon layer in a PFET region of the semiconductor substrate, thereby causing PFET silicon fins defined in the PFET region to become relaxed; and performing a second fin etch to define NFET silicon fins in an NFET region of the semiconductor substrate, wherein the NFET silicon fins remain tensile strained.
Abstract:
A semiconductor device includes source and drain regions above a substrate layer and a dielectric bar between each of the source and drain regions. Each of the source and drain regions has a filleted shape, with a bottom portion of the filleted shape including a horizontal bottom surface connecting two sloped surfaces. Two sloped surfaces on a backside of the semiconductor device are surrounded by a metal contact.
Abstract:
A pillar or trench structure in a substrate includes vertical portions and one or more indented cavities in a sidewall between the vertical portions. The indented cavities are partial undercuts substantially traverse to the vertical portions pillar structure, or separate undercuts attached to an anchor. A higher capacitance density is achieved through the layering of multiple conductive contact layers and insulating layers in the undercuts and the vertical portions of the pillar or trench structure.
Abstract:
An apparatus includes a fin, a gate, and a gate contact. A portion of the fin is disposed in a first layer. The gate is disposed in the first layer and adjacent to the fin. The gate contact is disposed on the gate and in a second layer, wherein the second layer is disposed on the first layer such that the gate contact is above the fin.
Abstract:
A semiconductor device structure and method for fabricating the same. The semiconductor device structure includes a first vertical transport field effect transistor (VTFET) comprising at least a first gate structure having a first gate length, and a second VTFET stacked on the first VTFET and comprising at least a second gate structure having a second gate length that is less than the first gate length. The method includes forming, on a substrate, a first VTFET including at least a first gate structure having a first gate length. The method further includes forming a second VTFET stacked on the first VTFET and including at least a second gate structure having a second gate length that is less than the first gate length.
Abstract:
Embodiments of one or more high bandwidth chips (HB chips), e.g., high bandwidth memories (HBMs), are mounted on a module substrate. The HB chips/HBMs each have one or more HBM parallel communication interfaces (HB chip PHYs or HBM PHYs, respectively) that are connected to a companion PHY through a compatible companion PHY parallel connection that enable communication between the HBM PHY and the companion PHY. A companion PHY parallel link connection connects to a SERDES parallel connection of a SERDES. The SERDES converts parallel data/information at the SERDES parallel connection to serial data information at a SERDES serial connection, and visa-versa, that enables efficient high bandwidth data transfer over longer distances. Alternative embodiments are disclosed.
Abstract:
A pillar structure is provided. The pillar structure includes a plurality of pillars. Each of the pillars include a capping material layer formed in a pit etched into a template wafer, a conductive plug formed on the capping material layer, a base layer formed on the conductive plug, and an attach material layer formed on the base layer. The pillars are joined vertically together to form the pillar structure.