Abstract:
A semiconductor memory device wherein, in continuous data reading, a notification signal to notify whether a suspend mode is entered or not is given synchronously with data output control according to an output control signal with a suspend function, and a method of controlling the device. When an output enable signal is also used as a suspend instruction, a synchronizing circuit synchronizes the output enable signal with a clock signal to output a synchronized output enable signal. This synchronized output enable signal is supplied to a ready control circuit and an output buffer circuit so that the output control of data and ready signal is performed in synchronization with the clock signal. A data terminal goes into a high impedance state in synchronization with the clock signal, which notifies transition to the suspend mode. This quickly notifies that the system bus has become open.
Abstract:
An aspect of the present invention provides a nonvolatile memory that includes a memory cell array including a data storage area to store a data, and a data invert flag storage area to store a data invert flag indicating whether or not the data is inverted. The memory cell array outputs selected data and a data invert flag related to the selected data. A state machine determines whether or not the number of memory cells to which a bias voltage is applied is equal to or greater than a predetermined number when writing data into the memory cell array. The state machine instructs a data controller to transfer inverted data and a data invert flag if it is equal to or greater than the predetermined number.
Abstract:
A nonvolatile semiconductor memory apparatus capable of attaining a low voltage when writing data, wherein charge injection into an unnecessary portion is not performed when reading, and capable of unifying a threshold voltage level when erasing, comprising a first conductive type semiconductor region, two source/drain regions made by a second conductive type semiconductor, a plurality of dielectric films stacked on a first conductive type semiconductor region between the two source/drain regions, and a gate electrode; wherein the first conductive type semiconductor region between the two source/drain regions includes a first region wherein a channel is formed by an inversion layer of a minority carrier and a second region formed between the first region and a source/drain region on one side of the first region and having higher concentration than that of the first region.
Abstract:
A semiconductor memory device includes memory cells, a memory cell array, word lines, latch circuits, first row decoders, second row decoders, first isolating transistors, and second isolating transistors. The memory cell includes a memory cell transistor having a floating gate and a control gate. The memory cell array includes the memory cells arranged in a matrix. The word line connects in common the control gates of the memory cell transistors in a same row. The first row decoder applies a positive voltage to the word lines in a write operation and in an erase operation. The second row decoder applies a negative voltage to the word lines in a write operation and in an erase operation. The first isolating transistor switches between the first row decoder and the word line. The second isolating transistor switches between the second row decoder and the word line.
Abstract:
The present invention relates to a flash memory cell and method of manufacturing the same, and programming/erasing/reading method in the flash memory cell. According to the present invention, a source region and a drain region are first formed and a tunnel oxide film is then formed. Therefore, it is possible to prevent damage of the tunnel oxide film due to an ion implantation process. Further, independent two channel regions are formed below the floating gate. Thus, it is possible to store data of two or more bits at a single cell. In addition, the tunnel oxide film, the floating gate and the dielectric film having an ONO structure are formed at a given regions. It is thus possible to reduce the steps of a process and improve an electrical characteristic and integration level of a device.
Abstract:
A non-volatile semiconductor memory device comprises a memory cell array of data-rewritable non-volatile memory cells or memory cell units containing the memory cells, and a plurality of word lines each commonly connected to the memory cells on the same row in the memory cell array. In write pulse applying during data writing, a high voltage for writing is applied to a selected word line, and an intermediate voltage for writing is applied to at least two of non-selected word lines. The beginning of charging a first word line located between the selected word line and a source line to a first intermediate voltage for writing is followed by the beginning of charging a second word line located between the selected word line and a bit line contact to a second intermediate voltage for writing.
Abstract:
There is provided a method of programming a non-volatile memory which can solve the problem of the data write system of the existing flash memory that a load capacitance of bit lines becomes large, the time required by the bit lines to reach the predetermined potential becomes longer, thereby the time required for data write operation becomes longer and power consumption also becomes large because the more the memory capacitance of memory array increases, the longer the length of bit lines becomes and the more the number of bit lines increases. In the non-volatile memory of the invention comprising the AND type memory array in which a plurality of memory cells are connected in parallel between the local bit lines and local drain lines, the local drain lines are precharged by supplying thereto a comparatively higher voltage from the common drain line side (opposite side of the main bit lines), the main bit lines are selectively precharged by applying thereto the voltage of 0V or a comparatively small voltage depending on the write data and thereafter a drain current is applied only to the selected memory cells to which data is written by applying the write voltage to the word lines in order to implant the hot electrons to the floating gate.
Abstract:
A programming method of the multi-level flash memory comprises shooting a programming voltage that is increasing upwards stepwise each time into the gate of the multi-level flash memory, and following, shooting a program verify voltage that is decreasing downwards to program a multi-level in the multi-level flash memory and shooting an additional programming voltage into the multi-level flash memory after the last program verify voltage is shot. An erasing method of the multi-level flash memory comprises shooting an erasing voltage that is decreasing downwards stepwise each time into a gate of the multi-level flash memory, and following, shooting a erase verify voltage that is increasing upwards to erase a multi-level in the multi-level flash memory and shooting an additional voltage into the multi-level flash memory after the last erase verify voltage is shot.
Abstract:
It is an object to, in a data storage circuit for storing data, provide a power saving data storage circuit and a data writing method in the data storage circuit, and further, a data storage device. Thus, in the present invention, reading out of existing data stored in a storage element M is performed prior to performing writing of new data to the storage element M to compare the existing data and the new data. The data storage circuit is configured so that in a case where the existing data and the new data are identical with each other, writing to the storage element M is not performed and, in a case where the existing data and the new data are not identical with each other, writing of the new data to the storage element M is performed. The data storage circuit is formed on a semiconductor substrate to have a data storage device.
Abstract:
The invention relates to a system, a memory component and a process for operating a memory cell, which includes an active material, which can be changed into a more or less conductive state by means of an appropriate switching process, whereby the process including (a) bringing the memory cell into the more or less conductive state and evaluating the state of the memory cell after it has been changed into the more or less conductive state.