Abstract:
The purpose of the present invention is to provide a charged particle beam device for detecting, with highly precise angular discrimination, charged particles emitted from a specimen. To achieve this purpose, proposed is a charged particle beam device provided with a scanning deflector for scanning on a specimen a charged particle beam emitted from a charged particle source, the charged particle beam device being provided with: a first detector for detecting charged particles obtained by scanning of the charged particle beam on a specimen, and a second detector placed between the first detector and the specimen, and supported so as to be able to move in the charged particle beam light axis direction.
Abstract:
A multi-column scanning electron microscopy (SEM) system is disclosed. The SEM system includes a source assembly. The source assembly includes two or more electron beam sources configured to generate a plurality of electron beams. The source assembly also includes two or more sets of positioners configured to actuate the two or more electron beam sources. The SEM system also includes a column assembly. The column assembly includes a plurality of substrate arrays. The column assembly also includes two or more electron-optical columns formed by a set of column electron-optical elements bonded to the plurality of substrate arrays. The SEM system also includes a stage configured to secure a sample that at least one of emits or scatters electrons in response to the plurality of electron beams directed by the two or more electron-optical columns to the sample.
Abstract:
A method for irradiating a planning target volume with charged particles includes delivering the charged particles to the planning target volume with a charged particle therapy system including a charged particle beam path and a gantry configured to rotate about the planning target volume and to direct the charged particle beam path; rotating the gantry, during an irradiation session, to a plurality of positions; during the rotation, irradiating the planning target volume with the charged particles at a first energy level at one or more of the plurality of positions.
Abstract:
There is provided a liner tube capable of reducing the effects of magnetic field variations on an electron beam. The liner tube (10) is disposed inside the electron optical column (2) of an electron microscope (100). The interior of the tube (10) forms a path for the electron beam (EB). The liner tube (10) has a first cylindrical member (110) that is made of copper, gold, silver, or an alloy consisting principally of one of these metals.
Abstract:
An electron-optical system for performing electron microscopy is disclosed. The system includes an electron beam source configured to generate a primary electron beam. The system includes a source lens, a condenser lens and an objective lens disposed along an optical axis. The system includes a first Wien filter disposed along the optical axis and a second Wien filter disposed along the optical axis. The first Wien filter and the second Wien filter are disposed between the source lens and the objective lens. The first Wien filter is configured to correct chromatic aberration in the primary beam. The system also includes a detector assembly configured to detect electrons emanating from the surface of the sample.
Abstract:
The purpose of the present invention is to provide a charged particle beam device with which it is possible to minimize the beam irradiation amount while maintaining a high measurement success rate. The present invention is a charged particle beam device provided with a control device for controlling a scan deflector on the basis of selection of a predetermined number n of frames, wherein the control device controls the scan deflector so that a charged particle beam is selectively scanned on a portion on a sample corresponding to a pixel satisfying a predetermined condition or a region including the portion on the sample from an image obtained by scanning the charged particle beam for a number m of frames (m≧1), the number m of frames being smaller than the number n of frames.
Abstract:
A method for irradiating a planning target volume with charged particles includes delivering the charged particles to the planning target volume with a charged particle therapy system including a charged particle beam path and a gantry configured to rotate about the planning target volume and to direct the charged particle beam path; rotating the gantry, during an irradiation session, to a plurality of positions; during the rotation, irradiating the planning target volume with the charged particles at a first energy level at one or more of the plurality of positions.
Abstract:
Disclosed herein is a method for acquiring an image, in which an image reducing the influence of electrification of a substrate is easily acquired. The method, in which an image of an image acquiring region is acquired by radiating an ion beam to a sample having a conducting part with a linear edge on a dielectric substrate, includes: performing an equal-width scan caused by the ion beam in a first direction that obliquely intersects the edge and sweep in a second direction intersecting the first direction, and radiating the ion beam to a scan region of a parallelogram shape wider than the image acquiring region; detecting secondary charged particles to generate image data of the scan region; calculating the image data of the scan region to generate image data of the image acquiring region; and displaying the image data of the image acquiring region.
Abstract:
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
Abstract:
A retarding field scanning electron microscope for imaging a specimen is described. The microscope includes a scanning deflection assembly configured for scanning an electron beam over the specimen, one or more controllers in communication with the scanning deflection assembly for controlling a scanning pattern of the electron beam, and a combined magnetic-electrostatic objection lens configured for focusing the electron beam, wherein the objective lens includes a magnetic lens portion and an electrostatic lens portion. The electrostatic lens portion includes an first electrode configured to be biased to a high potential, and a second electrode disposed between the first electrode and the specimen plane, the second electrode being configured to be biased to a potential lower than the first electrode, wherein the second electrode is configured for providing a retarding field of the retarding field scanning electron microscope. The retarding field scanning electron microscope further includes a voltage supply being connected to the second electrode for biasing the second electrode to a potential and being in communication with the one or more controllers, wherein the one or more controllers synchronize a variation of the potential of the second electrode with the scanning pattern of the electron beam.