Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.
Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.
Abstract:
Techniques for preventing parasitic beamlets from affecting ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for preventing parasitic beamlets from affecting ion implantation. The apparatus may comprise a controller that is configured to scan a spot beam back and forth, thereby forming an ion beam spanning a predetermined width. The apparatus may also comprise an aperture mechanism that, if kept stationary, allows the spot beam to pass through. The apparatus may further comprise a synchronization mechanism, coupled to the controller and the aperture mechanism, that is configured to cause the aperture mechanism to move in synchronization with the scanned spot beam, allowing the scanned spot beam to pass through but blocking one or more parasitic beamlets associated with the spot beam.
Abstract:
A high data-rate electron beam spot-grid array imaging system is provided that overcomes the low resolution and severe linearity requirements of prior art systems. Embodiments include an imaging system comprising an electron beam generator for simultaneously irradiating an array of spots spaced apart from each other on a surface of an object to be imaged, and a detector for collecting backscattered and/or secondary electrons emitted as a result of the interaction of the spots with the surface of the object to form an image of the irradiated portions of the object surface. A mechanical system moves the substrate in a direction which is nearly parallel to an axis of the array of spots such that as the substrate is moved across the spot array in the scan direction (the y-direction) the spots trace a path which leaves no gaps in the mechanical cross-scan direction (the x-direction). A compensator, such as a servo or a movable mirror, compensates for mechanical inaccuracies in the moving stage, thereby increasing imaging accuracy. In other embodiments, multiple detectors placed at different angles to the substrate collect electrons to provide multiple perspective imaging of the substrate surface.
Abstract:
A processing apparatus including a process chamber, a plasma source disposed within the process chamber, wherein the plasma source is movable in a first direction and is configured to emit an ion beam along a second direction that is orthogonal to the first direction. The apparatus may further include a platen disposed within the process chamber for supporting a substrate, and an ion beam current sensor that is disposed adjacent to the platen.
Abstract:
An ion implanter and an ion implant method are disclosed. Essentially, the wafer is moved along one direction and an aperture mechanism having an aperture is moved along another direction, so that the projected area of an ion beam filtered by the aperture is two-dimensionally scanned over the wafer. Thus, the required hardware and/or operation to move the wafer may be simplified. Further, when a ribbon ion beam is provided, the shape/size of the aperture may be similar to the size/shape of a traditional spot beam, so that a traditional two-dimensional scan may be achieved. Optionally, the ion beam path may be fixed without scanning the ion beam when the ion beam is to be implanted into the wafer, also the area of the aperture may be adjustable during a period of moving the aperture across the ion beam.
Abstract:
An ion implanter and an ion implant method for achieving a two-dimensional implantation on a wafer are disclosed. The ion implanter includes an ion source, a mass analyzer, a wafer driving mechanism, an aperture mechanism, and an aperture driving mechanism. The ion source and the mass analyzer are capable of providing an ion beam. The wafer driving mechanism is configured to drive a wafer along only a first direction. The aperture mechanism has an aperture for filtering the ion beam before the wafer is implanted. The aperture driving mechanism is configured to drive the aperture along a second direction intersecting the first direction. By moving the wafer and the aperture along different directions separately, the projection of the ion beam can achieve a two-dimensional implantation on the wafer. Here, at least one of the directions is optionally parallel to the longer dimension of the two-dimensional cross-section of the ion beam.
Abstract:
The invention relates to a method of inspecting a specimen surface. The method comprises the steps of generating a plurality of primary beams directed towards the specimen surface, focussing the plurality of primary beams onto respective loci on the specimen surface, collecting a plurality of secondary beams of charged particles originating from the specimen surface upon incidence of the primary beams, converting at least one of the collected secondary beams into an optical beam, and detecting the optical beam.
Abstract:
The invention relates to a method of inspecting a specimen surface. The method comprises the steps of generating a plurality of primary beams directed towards the specimen surface, focussing the plurality of primary beams onto respective loci on the specimen surface, collecting a plurality of secondary beams of charged particles originating from the specimen surface upon incidence of the primary beams, converting at least one of the collected secondary beams into an optical beam, and detecting the optical beam.
Abstract:
Techniques for reducing effects of photoresist outgassing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing effects of photoresist outgassing in an ion implanter. The apparatus may comprise a drift tube located between an end-station and an upstream beamline component. The apparatus may also comprise a first variable aperture between the drift tube and the end-station. The apparatus may further comprise a second variable aperture between the drift tube and the upstream beamline component. The first variable aperture and the second variable aperture can be adjusted to facilitate differential pumping.