Abstract:
A method for fabricating a dynamic random access memory having a high capacitance stacked capacitor begins by selectively forming relatively thick field oxide areas on the surface of a semiconductor substrate while leaving device areas for fabrication of field effect devices. A gate dielectric layer is formed on the substrate in the device areas. A relatively thick first layer of polysilicon is deposited on the field oxide areas and the device areas. Portions of the first polysilicon layer is removed while leaving portions thereof for the gate structure in the device areas, and portions over the field oxide areas. A first insulator layer composed at least in part of silicon nitride is formed over the device and field oxide areas. The stacked capacitors are now formed by first depositing a second polysilicon layer over the device and field oxide areas. An etch mask is now formed on the second polysilicon layer and the second polysilicon layer is anisotropically etching to form a shell-shaped second polysilicaon layer. A capacitor dielectric layer is formed over the shell-shaped second polysilicon layer. A third polysilicon layer is deposited and patterned as the top storage node electrode to complete the stacked capacitors. The etch mask can either be formed in part by a lateral etching of a resist mask or is formed in part by use of a sidewall spacer structure and mask. The first insulator layer is patterned to expose the source/drain structures to electrical contact either before or after the deposition of the second polysilicon layer.
Abstract:
The present invention discloses a safety system for a user vehicle including a controller, a display, an inter-vehicle wireless communication module coupled to the controller to receive GPS data of other vehicle around the user vehicle. A surrounding object pattern generator is coupled to the controller to generate a surrounding object pattern based on the GPS data of the other vehicle.
Abstract:
A semiconductor metal structure with an efficient usage of the chip area is provided. The structure includes a substrate, a copper-based interconnection structure over the substrate, the copper-based interconnection structure comprising a plurality of metallization layers connected by vias and in first dielectric layers, at least one aluminum-based layer over and connected to the copper-based interconnection structure, wherein a top layer of the at least one aluminum-based layer comprises a bond pad and an interconnect line connecting to two underlying vias, vias/contacts connecting a top layer of the copper-based interconnection structure and a bottom layer of the at least one aluminum-based layer, wherein the vias/contacts are in a second dielectric layer, and a third dielectric layer overlying the at least one aluminum-based layer, wherein the bond pad is exposed through an opening in the third dielectric layer.
Abstract:
A bonding structure and the method of fabricating the same are disclosed. The bonding structure of the invention includes a copper-based pad formed in an insulator layer and a protection layer substantially covering top surface of the copper-based pad. The protection layer is self-aligned formed and the material thereof is selected from a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
Abstract:
An anchored conductive damascene buried in a multi-density dielectric layer and method for forming the same, the anchored conductive damascene including a dielectric layer with an opening extending through a thickness of the dielectric layer; wherein the dielectric layer comprises at least one relatively higher density portion and a relatively lower density portion, the relatively lower density portion forming a contiguous major portion of the dielectric layer; and, wherein the opening in the relatively lower density portion has a lateral dimension relatively larger compared to the relatively higher density portion to form anchoring steps
Abstract:
A method for forming a self-aligned contact to an ultra-thin body transistor first providing an ultra-thin body transistor with source and drain regions operated by a gate stack; forming a contact spacer on the gate stack; forming a passivation layer overlying the transistor; forming a contact hole in the passivation layer exposing the contact spacer and the source/drain regions; filling the contact hole with an electrically conductive material; and establishing electrical communication with the source/drain region.
Abstract:
A circuit with an inter-module radiation interference shielding mechanism is disclosed. The circuit includes a circuit module producing a radiation field. At least one radiation shielding module is situated between the circuit module and another module that is vulnerable to the interference of the radiation field. The shielding module is substantially tangential to the radiation field.
Abstract:
A bonding structure and the method of fabricating the same are disclosed. The bonding structure of the invention includes a copper-based pad formed in an insulator layer and a protection layer substantially covering top surface of the copper-based pad. The protection layer is self-aligned formed and the material thereof is selected from a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
Abstract:
A damascene structure and process at semiconductor substrate level. A pre-metal dielectric layer is provided on a semiconductor substrate with an opening exposing a contact region on the substrate. A buffer metal layer is provided on the exposed contact region, and a barrier layer is provided on the interior of the opening. A conductor is provided on the buffer metal layer, substantially filling the opening to electrically connect to the contact region.
Abstract:
A method of forming a more uniform copper interconnect layer is described. A dielectric layer, electroconductive (EC) layer, and a photoresist layer are sequentially deposited on a substrate. An opening in the photoresist is etched through the dielectric layer while the EC layer serves as a hard mask. Following deposition of a diffusion barrier layer and copper seed layer on the EC layer and in the opening, the copper seed layer is removed above the EC layer by a first CMP step. The EC layer serves as a CMP stop to protect the dielectric layer and provides a more uniform surface for subsequent steps. Copper is selectively deposited on the seed layer within the opening. A second CMP step lowers the copper layer to be coplanar with the dielectric layer and removes the EC layer. The resulting copper interconnect layer has a more uniform thickness and surface for improved performance.