Abstract:
A layout modification method for fabricating a semiconductor device is provided. The layout modification method includes calculating uniformity of critical dimensions of first and second portions in a patterned layer by using a layout for an exposure manufacturing process to produce the semiconductor device. A width of the first and second portions equals a penumbra size of the exposure manufacturing process. The penumbra size is utilized to indicate which area of the patterned layer is affected by light leakage exposure from another exposure manufacturing process. The layout modification method further includes compensating non-uniformity of the first and second portions of the patterned layer according to the uniformity of critical dimensions to generate a modified layout. The first portion is divided into a plurality of first sub-portions. The second portion is divided into a plurality of second sub-portions. Each second sub-portion is surrounded by two of the first sub-portions.
Abstract:
An apparatus includes an extreme ultraviolet light source vessel having an intermediate focus, a scanner having a light source aperture, and a deflection module arranged between the intermediate focus and the light source aperture. The deflection module includes a first electrode plate and a second electrode plate, configured to create an electric field therebetween. Tin particles moving from the intermediate focus to the light source aperture passes through the deflection module, and are deflected by the electric field therein.
Abstract:
A wafer alignment apparatus includes a light source, a light detection device, and a rotation device configured to rotate a wafer. The light source is configured to provide a light directed to the wafer. The light detection device is configured to detect reflected light intensity from the wafer to locate at least one wafer alignment mark of wafer alignment marks separated by a plurality of angles. At least two of those angles are equal.
Abstract:
An embodiment method includes depositing a first dielectric film over and along sidewalls of a semiconductor fin, the semiconductor fin extending upwards from a semiconductor substrate. The method further includes depositing a dielectric material over the first dielectric film; recessing the first dielectric film below a top surface of the semiconductor fin to define a dummy fin, the dummy fin comprising an upper portion of the dielectric material; and forming a gate stack over and along sidewalls of the semiconductor fin and the dummy fin.
Abstract:
An embodiment is a method including recessing a gate electrode over a semiconductor fin on a substrate to form a first recess from a top surface of a dielectric layer, forming a first mask in the first recess over the recessed gate electrode, recessing a first conductive contact over a source/drain region of the semiconductor fin to form a second recess from the top surface of the dielectric layer, and forming a second mask in the second recess over the recessed first conductive contact.
Abstract:
The present disclosure provides a device having a doped active region disposed in a substrate. The doped active region having an elongate shape and extends in a first direction. The device also includes a plurality of first metal gates disposed over the active region such that the first metal gates each extend in a second direction different from the first direction. The plurality of first metal gates includes an outer-most first metal gate having a greater dimension measured in the second direction than the rest of the first metal gates. The device further includes a plurality of second metal gates disposed over the substrate but not over the doped active region. The second metal gates contain different materials than the first metal gates. The second metal gates each extend in the second direction and form a plurality of respective N/P boundaries with the first metal gates.
Abstract:
An apparatus, a system and a method are disclosed. An exemplary apparatus includes a wafer processing chamber. The apparatus further includes radiant heating elements disposed in different zones and operable to heat different portions of a wafer located within the wafer processing chamber. The apparatus further includes sensors disposed outside the wafer processing chamber and operable to monitor energy from the radiant heating elements disposed in the different zones. The apparatus further includes a computer configured to utilize the sensors to characterize the radiant heating elements disposed in the different zones and to provide a calibration for the radiant heating elements disposed in the different zones such that a substantially uniform temperature profile is maintained across a surface of the wafer.
Abstract:
A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
Abstract:
A material layer is formed over a substrate. A negative tone photoresist layer is formed over the material layer. An exposure process is performed to the negative tone photoresist layer. A post-exposure bake (PEB) process is performed to the negative tone photoresist layer. After the exposure process and the PEB process, the negative tone photoresist layer is treated with a solvent. The solvent contains a chemical having a greater dipole moment than n-butyl acetate (n-BA).
Abstract:
Various source/drain stressors that can enhance carrier mobility, and methods for manufacturing the same, are disclosed. An exemplary source/drain stressor includes a seed layer of a first material disposed over a substrate of a second material, the first material being different than the second material; a relaxed epitaxial layer disposed over the seed layer; and an epitaxial layer disposed over the relaxed epitaxial layer.