Abstract:
Aspects disclosed include static random access memory (SRAM) arrays having substantially constant operational yields across multiple modes of operation. In one aspect, a method of designing SRAM arrays with multiple modes operation is provided. The method includes determining performance characteristics associated with each mode of operation. SRAM bit cells configured to operate in each mode of operation are provided to the SRAM array. SRAM bit cells are biased to operate in a mode of operation using dynamic adaptive assist techniques, wherein the SRAM bit cells achieve a substantially constant operational yield across the modes. The SRAM bit cells have a corresponding type, wherein the number of SRAM bit cell types in the method is less than the number of modes of operation. Thus, each SRAM array may achieve a particular mode of operation without requiring a separate SRAM bit cell type for each mode, thereby reducing costs.
Abstract:
A method for scaling voltages provided to different modules of a system-on-chip (SOC) includes receiving, at an energy-performance engine of the SOC, a first indication of usage history for a first module of the SOC and a second indication of usage history for a second module of the SOC. The method includes receiving a battery life indication that indicates a remaining battery life for a battery of the SOC. The method also includes adjusting a first supply voltage provided to the first module of the SOC based on the first indication, the second indication, and the battery life indication. The method further includes adjusting a second supply voltage provided to the second module of the SOC based on the first indication, the second indication, and the battery life indication.
Abstract:
A complementary fin field-effect transistor (FinFET) includes a p-type device having a p-channel fin. The p-channel fin may include a first material that is lattice mismatched relative to a semiconductor substrate. The first material may have a compressive strain. The FinFET device also includes an n-type device having an re-channel fin. The n-channel fin may include a second material having a tensile strain that is lattice mismatched relative to the semiconductor substrate. The p-type device and the n-type device cooperate to form the complementary FinFET device.
Abstract:
An apparatus comprises a substrate and a fin-type semiconductor device extending from the substrate. The fin-type semiconductor device comprises means for providing a first fin-type conduction channel having first and second regions, means for providing a second fin-type conduction channel having a fourth region above a third region, and means for shielding current leakage coupled to at least one of the first region and the third region. The first region has a first doping concentration greater than a second doping concentration of the second region. The first fin-type conduction channel comprises first ion implants implanted into the substrate at a first depth and second ion implants implanted into the substrate at a different depth. The third region has a third doping concentration, and the fourth region has a fourth doping concentration.
Abstract:
A method includes forming a first metal layer on source/drain regions of an n-type metal-oxide-semiconductor (NMOS) device and on source/drain regions of a p-type MOS (PMOS) device by chemical vapor deposition (CVD) or non-energetic physical vapor deposition (PVD). The method further includes selectively performing a rapid thermal anneal (RTA) process on the first metal layer after forming the first metal layer.
Abstract:
A method includes forming an electronic device structure including a substrate, an oxide layer, and a first low-k layer. The method also includes forming openings by patterning the oxide layer, filling the openings with a conductive material to form conductive structures within the openings, and removing the oxide layer using the first low-k layer as an etch stop layer. The conductive structures contact the first low-k layer. Removing the oxide layer includes performing a chemical vapor etch process with respect to the oxide layer to form an etch byproduct and removing the etch byproduct. The method includes forming a second low-k layer using a deposition process that causes the second low-k layer to define one or more cavities. Each cavity is defined between a first conductive structure and an adjacent conductive structure, the first and second conductive structures have a spacing therebetween that is smaller than a threshold distance.
Abstract:
Methods for designing fin-based field effect transistors (FinFETs) are disclosed. In one embodiment, an initial FinFET design is evaluated to ascertain the space between fins (i.e., the “fin pitch”). Additionally, the spacing between interconnect metal modules (i.e., the “metal pitch”) is ascertained. A ratio of metal pitch to fin pitch is established. From this initial ratio, isotropically scaled sizes are considered along with anisotropically scaled sizes. The variously scaled sizes are compared to design criteria to see what new size best fits the design criteria.
Abstract:
Deep trench capacitors (DTCs) in an inter-layer medium (ILM) on an interconnect layer of an integrated circuit (IC) die is disclosed. A method of fabricating an IC die comprising DTCs in the ILM is also disclosed. The DTCs are disposed on an IC, in an ILM, to minimize the lengths of the power and ground traces coupling the DTCs to circuits in a semiconductor layer. The DTCs and the semiconductor layer are on opposite sides of the metal layer(s) used to interconnect the circuits, so the locations of the DTCs in the ILM can be independent of circuit layout and interconnect routing. IC dies with DTCs disposed in the ILM can significantly reduce voltage droop and spikes in IC dies in an IC stack. In one example, DTCs are also located in trenches in the substrate of the IC die.
Abstract:
A three-dimensional (3D) integrated circuit (IC) (3DIC) package with a bottom die layer employing an interposer substrate, and related fabrication methods. To facilitate the ability to fabricate the 3DIC package using a top die-to-bottom wafer process, a bottom die layer of the 3DIC package includes an interposer substrate. This interposer substrate provides support for a bottom die(s) of the 3DIC package. The interposer substrate is extended in length to be longer in length than the top die. The interposer substrate provides additional die area in the bottom die layer in which a larger length, top die can be bonded. In this manner, the bottom die layer, with its extended interposer substrate, can be formed in a bottom wafer in which the top die can be bonded in a top die-to-bottom wafer fabrication process.
Abstract:
An integrated circuit (IC) package is described. The IC package includes a metallization structure. The IC package also includes a first die in a package substrate layer. The package substrate includes a first surface and a second surface, opposite the first surface. The second surface of the package substrate layer is on the metallization structure. The IC package further includes a second die on the first surface of the package substrate layer and on the first die. The IC package also includes through vias in the package substrate layer to couple pads of the second die to metal routing layers at a first surface of the metallization structure. The IC package further includes package bumps on a second surface of the metallization structure, opposite the first surface, and coupled to the pads of the second die through the metal routing layers.