Abstract:
Methods, systems, and devices for wireless communications are described. In some examples, a user equipment (UE) may communicate with a base station using multiple receivers and receive an indication from the base station to activate a second bandwidth part of a set of bandwidth parts configured for the UE. In response to the indication, the UE may switch from operating in a first bandwidth part to operating in the second bandwidth part and adjust a quantity of active receivers at the UE based on switching from operating in the first bandwidth part to operating in the second bandwidth part. Additionally or alternatively, the UE may adjust the quantity of active receivers at the UE based on monitoring for downlink grants from the base station.
Abstract:
An apparatus includes an array of bit cells that include a first row of bit cells and a second row of bit cells. The apparatus also includes a first global read word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The apparatus further includes a second global read word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The apparatus also includes a global write word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The first global read word line, the second global read word line, and the global write word line are located in a common metal layer.
Abstract:
An apparatus includes a first metal layer coupled to a bit cell. The apparatus also includes a third metal layer including a write word line that is coupled to the bit cell. The apparatus further includes a second metal layer between the first metal layer and the third metal layer. The second metal layer includes two read word lines coupled to the bit cell.
Abstract:
Aspects disclosed include static random access memory (SRAM) arrays having substantially constant operational yields across multiple modes of operation. In one aspect, a method of designing SRAM arrays with multiple modes operation is provided. The method includes determining performance characteristics associated with each mode of operation. SRAM bit cells configured to operate in each mode of operation are provided to the SRAM array. SRAM bit cells are biased to operate in a mode of operation using dynamic adaptive assist techniques, wherein the SRAM bit cells achieve a substantially constant operational yield across the modes. The SRAM bit cells have a corresponding type, wherein the number of SRAM bit cell types in the method is less than the number of modes of operation. Thus, each SRAM array may achieve a particular mode of operation without requiring a separate SRAM bit cell type for each mode, thereby reducing costs.
Abstract:
An apparatus for selectively improving integrated circuit performance is provided. In an example, an integrated circuit is fabricated according to an integrated circuit layout. A critical portion of the integrated circuit layout determines a speed of the integrated circuit, where at least a part of the critical portion includes at least one of a halo implant region, lightly doped drain (LDD) implant region, and source drain extension (SDE) implant region. A marker layer comprises the part of the critical portion that includes the at least one of the halo implant region, the lightly doped drain (LDD) implant region, and the source drain extension (SDE) implant region, and includes at least one transistor formed therefrom.
Abstract:
An apparatus includes a first metal layer coupled to a bit cell. The apparatus also includes a third metal layer including a write word line that is coupled to the bit cell. The apparatus further includes a second metal layer between the first metal layer and the third metal layer. The second metal layer includes two read word lines coupled to the bit cell.
Abstract:
An apparatus includes an array of bit cells that include a first row of bit cells and a second row of bit cells. The apparatus also includes a first global read word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The apparatus further includes a second global read word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The apparatus also includes a global write word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The first global read word line, the second global read word line, and the global write word line are located in a common metal layer.
Abstract:
Methods, systems, and devices for wireless communications are described. In some examples, a user equipment (UE) may communicate with a base station using multiple receivers and receive an indication from the base station to activate a second bandwidth part of a set of bandwidth parts configured for the UE. In response to the indication, the UE may switch from operating in a first bandwidth part to operating in the second bandwidth part and adjust a quantity of active receivers at the UE based on switching from operating in the first bandwidth part to operating in the second bandwidth part. Additionally or alternatively, the UE may adjust the quantity of active receivers at the UE based on monitoring for downlink grants from the base station.
Abstract:
An apparatus includes first means for routing current coupled to a bit cell. The apparatus includes third means for routing current. The third means for routing current includes a write word line coupled to the bit cell. The apparatus includes second means for routing current. The second means for routing current is between the first means for routing current and the third means for routing current. The second means for routing current includes two read word lines coupled to the bit cell.
Abstract:
An apparatus includes a first metal layer coupled to a bit cell. The apparatus also includes a third metal layer including a write word line that is coupled to the bit cell. The apparatus further includes a second metal layer between the first metal layer and the third metal layer. The second metal layer includes two read word lines coupled to the bit cell.