Abstract:
Some embodiments described herein relate to systems and methods operable to combine immunoassay and Total Protein techniques in a single sample run. Some embodiments described herein allow for multiple sequential immunoassays to be performed in the same microfluidic device. Some embodiments described herein relate to stripping reagents operable to remove primary antibodies associated with immunoassays. Such stripping reagents can allow for additional immunoassays and/or Total Protein assays to be performed on the same sample.
Abstract:
A microfluidic device for conducting a fluid assay includes an injection-molded (or “molded”) fluidics layer having at least one microfluidic channel configured to allow assay fluids to flow there-along, the channel having channel side walls, a channel bottom, and a channel 3D geometry, and the fluidics layer being made from injection-molded liquid silicone (or PDMS). Having the fluidics layer made from injection molded liquid silicone enables smaller-sized channel features, such as microfluidic valves and pistons, smaller channel dimensions and spacing (providing smaller device footprint, higher device capacity and other benefits), and various geometries for the channels and channel features.
Abstract:
An apparatus includes a body portion that defines a reservoir and a set of substantially flexible capillaries. The set of substantially flexible capillaries are fixedly coupled to the body portion and in fluid communication with the reservoir. A connector is configured to be coupled to the body portion to be in fluid communication with the reservoir and the set of substantially flexible capillaries. The connector is further configured to be coupled to a vacuum source. The apparatus is arranged such that at least a part of the body portion is electrically conductive. Methods for separating and detecting an analyte from a biological sample with the apparatus are also provided. For example, methods for separating and detecting one or more proteins from a cellular lysate or a purified protein are also provided.
Abstract:
A system for assaying a biological sample for a presence of a target analyte includes an assaying device and a computer controller. The assaying device includes a housing, a receptacle disposed in the housing, and a source of activation energy. The receptacle is configured to accept an electrophoresis cell. The electrophoresis cell has a recess area configured to accept a chip configured to accept the biological sample. The chip includes a polymeric separation medium with activatable functional groups that covalently bond to the target analyte when activated. The source of activation energy is configured to supply activation energy to activate the activatable functional groups. The computer controller is operably coupled to the source of activation energy and is configured to activate the source of activation energy to direct an application of activation energy to the polymeric separation medium to activate the activatable functional groups.
Abstract:
A method and a particle analyzer are provided for determining a particle size distribution of a liquid sample including particles of a lower size range, particles of an intermediate size range, and particles of an upper size range. A dark-field image frame is captured in which the particles of the lower size range and the particles of the intermediate size range are resolved, and a bright-field image frame is captured in which the particles of the intermediate size range and the particles of the upper size range are resolved. Absolute sizes of the particles of the intermediate size range and the particles of the upper size range are determined from the bright-field image frame. Calibrated sizes of the particles of the lower size range are determined from the dark-field image frame by using the particles of the intermediate size range as internal calibration standards.
Abstract:
Embodiments include systems, apparatuses, and methods to efficiently separate analytes in a sample and elute fractions of the separated analytes. In some embodiments, a method includes introducing a sample in a capillary with a first end ionically coupled to a first running buffer and a second end ionically coupled to a second running buffer to form a pH gradient. The method includes applying a voltage between the first running buffer and the second running buffer, to separate a plurality of analytes in the sample. The method includes disposing the second end of the capillary in a collection well including a chemical mobilizer and applying a voltage to elute one or more analytes from the plurality of analytes in the sample, that have been separated, into the collection well. Embodiments include detection methods to monitor separation of analytes, mobilization of analytes, and/or elution of fractions containing analytes.
Abstract:
Embodiments described herein relate to devices, and methods for quantifying thiol content in a sample containing a mixture of proteins or protein isoforms. The method includes conjugating a portion of the sample with free thiol detection binders, separating the contents in the portion of the sample into separated protein isoforms, detecting fluorescence signals associated with each separated protein isoform, and quantifying, based on the fluorescence signals, a relative amount of free thiol associated with each separated protein isoform. In some instances, the method includes quantifying the amount of each separated protein isoform based on absorbance signals associated with each separated protein isoform. In some instances, the fluorescence and/or absorbance signals associated with protein isoforms conjugated with detection binders can be compared with the corresponding signals associated with unconjugated protein isoforms. In some instances, the method further includes applying a reducing agent and quantifying total-thiol content in the sample.
Abstract:
An apparatus includes a body portion that defines a reservoir and a set of substantially flexible capillaries. The set of substantially flexible capillaries are fixedly coupled to the body portion and in fluid communication with the reservoir. A connector is configured to be coupled to the body portion to be in fluid communication with the reservoir and the set of substantially flexible capillaries. The connector is further configured to be coupled to a vacuum source. The apparatus is arranged such that at least a part of the body portion is electrically conductive. Methods for separating and detecting an analyte from a biological sample with the apparatus are also provided. For example, methods for separating and detecting one or more proteins from a cellular lysate or a purified protein are also provided.
Abstract:
Embodiments described herein generally relate to cartridges suitable for performing electrophoretic separation of analytes. Cartridges described herein are particularly well suited for reuse. Cartridges described herein can include a reservoir disposed between a capillary and a container containing a run buffer. The reservoir can inhibit run buffer from intruding into the capillary, thereby allowing repeated electrophoretic separations to be more consistent, more accurate, and/or more reliable.
Abstract:
Embodiments disclosed include systems, devices, and methods for analysis of samples containing particles used for gene delivery to determine a quality of the sample and/or an indication that the gene delivery particles are in a full, partial, and/or empty state. The present disclosure also relates to determining a protein and/or NA content in samples with known proportions of gene delivery particles in a full, partial, and/or empty state and based on the determination, establish a relationship between NA content and proportions of gene delivery particles in a full state. The present disclosure also relates to using such an established relationship to predict a proportion of the gene delivery particles in a full, partial, and/or empty state in test samples having the gene delivery particles in an unknown state.