Abstract:
The method is for automatic astigmatism correction of a lens system. A first image of a first frequency spectrum in a microscope is provided. The first image of a view is not in focus. The first image is then imaged. A first roundness measure of a distribution and directions of intensities in the first image is determined. The lens is changed to a second stigmator setting to provide a second image of a second frequency spectrum. The second image of the view is not in focus. The second image is the same view as the first image of the view at the first stigmator setting. A second roundness measure of a distribution and directions of intensities in the second image is determined. The first roundness measure is compared with the second roundness measure. The image with the roundness measure indicating the roundest distribution is selected.
Abstract:
A method for inspecting a specimen with an array of primary charged particle beamlets in a charged particle beam device having an optical axis. The method includes generating a primary charged particle beam; illuminating a multi-aperture lens plate with the primary charged particle beam to generate the array of primary charged particle beamlets; and correcting a field curvature of the charged particle beam device with a first and a second field curvature correction electrode. The method further includes applying a voltage to the first and to the second field curvature correction electrode. At least one of the field strength provided by the first and the second field curvature correction electrode varies in a plane perpendicular to the optical axis of the charged particle beam device. The method further includes focusing the primary charged particle beamlets on separate locations on the specimen with an objective lens.
Abstract:
A multi charged particle beam irradiation apparatus includes a shaping aperture array substrate, where plural openings are formed as an aperture array, to shape multi-beams by making a region including entire plural openings irradiated by a charged particle beam, and making portions of a charged particle beam individually pass through a corresponding one of the plural openings; and a plurality of stages of lenses, arranged such that a reduction ratio of multi-beams by at least one lens of a stage before the last stage lens is larger than that of the multi-beams by the last stage lens, to correct distortion of a formed image obtained by forming an image of the aperture array by the multi-beams, and to form the image of the aperture array by the multi-beams at a height position between the last stage lens and a last-but-one stage lens, and at the surface of a target object.
Abstract:
An electrostatic multipole device for influencing a charged particle beam propagating along an optical axis is described. The electrostatic multipole device comprises a substrate with at least one aperture opening for the charged particle beam, which extends along the optical axis through the substrate, and four or more electrodes which are formed on a first main surface of the substrate to influence the charged particle beam propagating through the aperture opening, wherein each of the four or more electrodes is arranged at a radial distance from a beam limiting edge of the aperture opening. Further, a method of manufacturing an electrostatic multipole device is described.
Abstract:
There is provided an electron microscope capable of measuring aberration with high accuracy. The electron microscope (100) comprises: an electron beam source (10) for producing an electron beam (EB); an illumination lens system (101) for focusing the electron beam (EB) onto a sample (S); a scanner (12) for scanning the focused electron beam (EB) over the sample (S); an aperture stop (30) having a plurality of detection angle-limiting holes (32) for extracting rays of the electron beam (EB) having mutually different detection angles from the electron beam (EB) transmitted through the sample (S); and a detector (20) for detecting the rays of the electron beam (EB) passed through the aperture stop (30).
Abstract:
In general, in a multipole lens of an aberration corrector of a charged particle beam device, there is only one condition that can be set where both a spherical aberration correction condition and magnetic saturation are satisfied. Therefore, a plurality of acceleration voltages cannot be handled. Consequently, the present invention provides a spherical aberration corrector that satisfies the magnetic saturation state for a plurality of aberration correction conditions by selectively magnetizing a plurality of pole groups of the multipole lens according to the changes in the objective lens magnetization current.
Abstract:
Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
Abstract:
One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
Abstract:
The present disclosure provides a method of reducing coma and chromatic aberration in a charged particle beam device for providing a beam tilt of a charged particle beam. The method includes tilting the charged particle beam with a deflection assembly consisting of two or more electrostatic deflection elements, wherein at least one deflection element of the two or more deflection elements is a post-lens deflector, while the charged particle beam is guided through an essentially coma-free z-position of an objective lens, and reducing off-axis chromatic aberrations with a magnetic deflection element, wherein tilting the charged particle beam reduces coma independent of off-axis chromatic aberrations.
Abstract:
The method is for automatic astigmatism correction of a lens system. A first image is provided that is not in focus at a first stigmator setting of a set of lenses. A calculating device calculates a corresponding first Fourier spectrum image. A distribution and direction of pixels of the Fourier spectrum image are determined by calculating a first vector and a second vector. The first vector is compared with the second vector. The lens system is changed from a first stigmator setting to a second stigmator setting to provide a second image. A corresponding Fourier spectrum image is calculated. The distribution and direction of pixels of the second Fourier spectrum image is determined by calculating a third vector and a fourth vector. The third vector is compared to the fourth vector. The image that has the lowest vector ratio is selected.