Abstract:
A three-dimensional semiconductor memory device includes: a base substrate; a gate stack structure disposed on the base substrate, and including gate electrodes stacked in a direction substantially perpendicular to a top surface of the base substrate; a penetration region penetrating through the gate stack structure and surrounded by the gate stack structure; and vertical channel structures passing through the gate stack structure. The lowermost gate electrodes among the gate electrodes are spaced apart from each other, and a portion of at least one of the lowermost gate electrodes has a shape bent toward the penetration region.
Abstract:
A memory device includes a plurality of gate electrode layers stacked on a substrate, a plurality of channel layers penetrating the plurality of gate electrode layers, a gate insulating layer between the plurality of gate electrode layers and the plurality of channel layers, and a common source line on the substrate adjacent to the gate electrode layers. The common source line includes a first part and a second part that are alternately arranged in a first direction and have different heights in a direction vertical to a top surface of the substrate. The gate insulating layer includes a plurality of vertical parts and a horizontal part. The plurality of vertical parts surrounds corresponding ones of the plurality of channel layers. The horizontal part extends parallel to a top surface of the substrate.
Abstract:
A semiconductor device comprises a peripheral circuit region provided on a first substrate and including circuit devices and a contact plug extending on the first substrate in a vertical direction; a memory cell region provided on a second substrate disposed above the first substrate and including memory cells; and a through insulating region penetrating through the second substrate on the contact plug and covering an upper surface of the contact plug.
Abstract:
An optical inspection apparatus includes an inspection target unit on which an inspection target is loaded, an illumination optical unit configured to irradiate incident light to the inspection target, an objective lens unit disposed between the illumination optical unit and the inspection target unit, a detection optical unit configured to receive reflective light reflected from the inspection target to thereby detect a presence or absence of a defect on the inspection target, and a control unit configured to control the illumination optical unit and the detection optical unit. The illumination optical unit includes a light source part configured to irradiate the incident light, and a spatial filter array configured to modify a transmission region of the incident light irradiated from the light source part. The spatial filter array includes a spatial filter part, and a filter movement part configured to move the spatial filter part.
Abstract:
A memory device includes a gate structure including a plurality of gate electrode layers stacked on an upper surface of a substrate, a plurality of channel areas passing through the gate structure and extending in a direction perpendicular to the upper surface of the substrate, a source area disposed on the substrate to extend in a first direction and including impurities, and a common source line extending in the direction perpendicular to the upper surface of the substrate to be connected to the source area, and including a plurality of layers containing different materials.
Abstract:
An autofocus control apparatus includes a beam splitter, a condenser lens and a detector. The beam splitter directs light beams from a light source toward a sample and passes light beams reflected from the sample to the condenser lens. The condenser lens condenses the light beams, and the detector detects a focal point deviation of the sample relative to a focal point of the condenser lens. The focal point deviation is detected based on an intersection of a focal line passing through different focal points of the condenser lens and a light receiving plane configured to receive the light beams passing through the condenser lens.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate and a stacked structure in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked on the substrate. The semiconductor device includes a plurality of dummy channel structures that pass through the stacked structure. Moreover, the semiconductor device includes a contact structure in contact with at least one of the plurality of dummy channel structures adjacent thereto, and in contact with one of the plurality of electrode layers.
Abstract:
A three-dimensional semiconductor memory device includes first and second gate stacked structures, disposed on a base substrate, and stacked in a direction perpendicular to a surface of the base plate, the first and second gate stacked structures including gate electrodes spaced apart from each other and stacked; a through region passing through the first and second gate stacked structures and surrounded by the first and second gate stacked structures; and vertical channel structures passing through the first and second gate stacked structures, wherein the first gate stacked structure has first contact pads adjacent to the through region and arranged in a stepped shape, the second gate stacked structure having second contact pads adjacent to the through region and arranged in a stepped shape, at least a portion of the second contact pads overlap the first contact pads on one side of the through region.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate and a stacked structure in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked on the substrate. The semiconductor device includes a plurality of dummy channel structures that pass through the stacked structure. Moreover, the semiconductor device includes a contact structure in contact with at least one of the plurality of dummy channel structures adjacent thereto, and in contact with one of the plurality of electrode layers.
Abstract:
A three-dimensional semiconductor device is provided including main separation structures disposed on a substrate, and extending in a first direction, parallel to a surface of the substrate; gate electrodes disposed between the main separation structures; a first secondary separation structure penetrating through the gate electrodes, between the main separation structures, and including a first linear portion and a second linear portion, having end portions opposing each other; and second secondary separation structures disposed between the first secondary separation structure and the main separation structures, and penetrating through the gate electrodes. The second secondary separation structures have end portions opposing each other between the second linear portion and the main separation structures.