Abstract:
A method and apparatus for generating random binary sequences from a physical entropy source having a state A and a state B by detecting whether the physical entropy source is in the state A or in the state B, attempting to shift the state of the physical entropy source to the opposite state in a probabilistic manner with less than 100% certainty, and producing one of four outputs based on the detected state and the state of the physical entropy source before the attempted shift. The outputs are placed in first and second queues and extracted in pairs from each queue. Random binary bits are output based on the sequences extracted from each queue.
Abstract:
Sense amplifiers employing control circuitry for decoupling resistive memory sense inputs during state sensing to prevent current back injection, and related methods and systems are disclosed. In one embodiment, sense amplifier is provided. The sense amplifier comprises a differential sense input coupled to bit line. The sense amplifier also comprises a differential reference input coupled to reference line. First inverter inverts first inverter input into first inverter output coupled to second inverter input of second inverter, first inverter output configured to provide state of bitcell. Second inverter inverts second inverter input into second inverter output coupled to first inverter input. Control circuit couples differential reference input to first inverter and differential sense input to second inverter in latch mode, and decouples differential reference input to first inverter and differential sense input to second inverter in sensing mode to provide sensed state of bitcell on first inverter output.
Abstract:
Aspects described herein are related to spintronic logic gates employing a Giant Spin Hall Effect (GSHE) magnetic tunnel junction (MTJ) element(s) for performing logical operations. In one aspect, a spintronic logic gate is disclosed that includes a charge current generation circuit and a GSHE MTJ element. The charge current generation circuit is configured to generate a charge current representing an input bit set. The input bit set may include one or more input bit states for a logical operation. The GSHE MTJ element is configured to set a logical output bit state for the logical operation, and has a threshold current level. The GSHE MTJ element is configured to generate a GSHE spin current in response to the charge current and perform the logical operation on the input bit set by setting the logical output bit state based on whether the GSHE spin current exceeds the threshold current level.
Abstract:
Embodiments described herein are related to contactless data communication. Related systems and methods for contactless data communication are disclosed herein. For example, a magnetic field-based contactless transmitter is disclosed that includes a substrate, a pair of dipole coils disposed on the substrate, and a drive circuit electrically coupled to the pair of dipole coils. To transmit data to a magnetic tunnel junction (MTJ) receiver disposed on a second substrate, the drive circuit is configured to drive the pair of dipole coils so as to generate a magnetic field in-plane to the MTJ receiver. Data can be transmitted from the magnetic field-based contactless transmitter to the MTJ receiver using the magnetic field.
Abstract:
A method and apparatus for generating random binary sequences from a physical entropy source having a state A and a state B by detecting whether the physical entropy source is in the state A or in the state B, attempting to shift the state of the physical entropy source to the opposite state in a probabilistic manner with less than 100% certainty, and producing one of four outputs based on the detected state and the state of the physical entropy source before the attempted shift. The outputs are placed in first and second queues and extracted in pairs from each queue. Random binary bits are output based on the sequences extracted from each queue.
Abstract:
Systems and methods pertain to avoiding undesirable current paths or sneak paths in spintronic logic gates formed from Giant Spin Hall Effect (GSHE) magnetic tunnel junction (MTJ) elements. Sneak path prevention logic is coupled to the GSHE MTJ elements, to prevent the sneak paths. The sneak path prevention logic may include one or more transistors coupled to the one or more GSHE MTJ elements, to restrict write current from flowing from an intended pipeline stage to an unintended pipeline stage during a write operation. The sneak path prevention logic may also include one or more diodes coupled to the one or more GSHE MTJ elements to prevent a preset current from flowing into input circuitry or a charge current generation circuit. A preset line may be coupled to the one or more GSHE MTJ elements to divert preset current from flowing into unintended paths.
Abstract:
A probabilistic programming current is injected into a cluster of bi-stable probabilistic switching elements, the probabilistic programming current having parameters set to result in a less than unity probability of any given bi-stable switching element switching, and a resistance of the cluster of bi-stable switching elements is detected. The probabilistic programming current is injected and the resistance of the cluster state detected until a termination condition is met. Optionally the termination condition is detecting the resistance of the cluster of bi-stable switching elements at a value representing a multi-bit data.
Abstract:
A memory cell includes an elongated first electrode coupled to a magnetic tunnel junction (MTJ) structure and an elongated second electrode aligned with the elongated first electrode coupled to the MTJ structure. The elongated electrodes are configured to direct mutually additive portions of a switching current induced magnetic field through the MTJ. The mutually additive portions enhance switching of the MTJ in response to application of the switching current.
Abstract:
A random number generator system that utilizes a magnetic tunnel junction (MTJ) that is controlled by an STT-MTJ entropy controller that determines whether to proceed with generating random numbers or not by monitoring the health of the MTJ-based random number generator is illustrated. If the health of the random number generation is above a threshold, the STT-MTJ entropy controller shuts down the MTJ-based random number generator and sends a message to a requesting chipset that a secure key generation is not possible. If the health of the random number generation is below a threshold, the entropy controller allows the MTJ-based random number generator to generate random numbers based on a specified algorithm, the output of which is post processed and used by a cryptographic-quality deterministic random bit generator to generate a security key for a requesting chipset.
Abstract:
Embodiments described herein are related to contactless data communication. Related systems and methods for contactless data communication are disclosed herein. For example, a magnetic field-based contactless transmitter is disclosed that includes a substrate, a pair of dipole coils disposed on the substrate, and a drive circuit electrically coupled to the pair of dipole coils. To transmit data to a magnetic tunnel junction (MTJ) receiver disposed on a second substrate, the drive circuit is configured to drive the pair of dipole coils so as to generate a magnetic field in-plane to the MTJ receiver. Data can be transmitted from the magnetic field-based contactless transmitter to the MTJ receiver using the magnetic field.