摘要:
Disclosed are semiconductor structures comprising a field effect transistor (FET) having a low-resistance source/drain contact and, optionally, low gate-to-source/drain contact capacitance. The structures comprise a semiconductor body and, contained therein, first and second source/drain regions and a channel region. A first gate is adjacent to the semiconductor body at the channel region and a second, non-functioning, gate is adjacent to the semiconductor body such that the second source/drain region is between the first and second gates. First and second source/drain contacts are on the first and source/drain regions, respectively. The second source/drain contact is wider than the first and, thus, has a lower resistance. Additionally, spacing of the first and second source/drain contacts relative to the first gate can be such that the first gate-to-second source/drain contact capacitance is equal to or less than the first gate-to-first source/drain contact capacitance. Also disclosed are associated formation methods.
摘要:
The present disclosure generally relates to semiconductor structures and, more particularly, to multi-finger devices in multiple-gate-contacted-pitch, integrated structures and methods of manufacture. The structure includes: a first plurality of fin structures formed on a substrate having a channel surface in a {110} plane; and a second plurality of fin structures formed on the substrate with a channel surface in a {100} plane, positioned in relation to the first plurality of fin structures.
摘要:
A method of single-fin removal for quadruple density fins. A first double density pattern of first sidewall spacers is produced on a semiconductor substrate from first mandrels formed by a first mask using a minimum pitch. A second double density pattern of second sidewall spacers is produced on a layer disposed above the first double density pattern from second mandrels formed by a second mask with a the minimum pitch that is shifted relative to the first mask. A single sidewall spacer is removed from either the first or second double density pattern of first and second sidewall spacers. Sidewall image transfer processes allow the formation of quadruple density fins from which but a single fin is removed.
摘要:
A method includes conducting a laser-based anneal treatment on a metal layer positioned above and in direct contact with a top portion of a silicon cap layer located in direct contact with a first diamond shaped epitaxial layer surrounding a first fin and a second diamond shaped epitaxial layer surrounding a second fin. The metal layer extends from the top portion of the silicon cap layer in direct contact with the first diamond shaped epitaxial layer to the top portion of the silicon cap layer in direct contact with the second diamond shaped epitaxial layer. The conducted laser-based anneal treatment forms a silicide layer, a portion of the silicide layer between the first and the second diamond shaped epitaxial layers is substantially thicker than a portion of the silicide layer in contact with the first and the second diamond shaped epitaxial layers.
摘要:
A method includes conducting a laser-based anneal treatment on a metal layer positioned above and in direct contact with a first diamond shaped epitaxial layer surrounding a first fin and a second diamond shaped epitaxial layer surrounding a second fin, the metal layer extends from the first diamond shaped epitaxial layer to the second diamond shaped epitaxial layer, the laser-based anneal treatment forms a silicide layer, a portion of the silicide layer between the first and the second diamond shaped epitaxial layers is substantially thicker than a portion of the silicide layer in contact with the first and the second diamond shaped epitaxial layers, and the silicide layer takes on a crystal orientation of the first and the second epitaxial layers.
摘要:
A method that forms a structure implants a well implant into a substrate, patterns a mask on the substrate (to have at least one opening that exposes a channel region of the substrate) and forms a conformal dielectric layer on the mask and to line the opening. The conformal dielectric layer covers the channel region of the substrate. The method also forms a conformal gate metal layer on the conformal dielectric layer, implants a compensating implant through the conformal gate metal layer and the conformal dielectric layer into the channel region of the substrate, and forms a gate conductor on the conformal gate metal layer. Additionally, the method removes the mask to leave a gate stack on the substrate, forms sidewall spacers on the gate stack, and then forms source/drain regions in the substrate partially below the sidewall spacers.
摘要:
A method of forming a via and a wiring structure formed are disclosed. The method may include forming a conductive line in a first dielectric layer; forming a hard mask adjacent to the conductive line after the conductive line forming; forming a second dielectric layer over the hard mask; and forming a via opening to the conductive line in the second dielectric layer. The via opening lands at least partially on the hard mask to self-align the via opening to the conductive line. A via may be formed by filling the via opening with a conductor.
摘要:
Structures and fabrication methods for vertical-transport field-effect transistors. The structure includes a vertical-transport field-effect transistor having a source/drain region located in a semiconductor layer, a fin projecting from the source/drain region in the semiconductor layer, and a gate electrode on the semiconductor layer and coupled with the fin. The structure further includes an interconnect located in a trench defined in the semiconductor layer. The interconnect is coupled with the source/drain region or the gate electrode of the vertical-transport field-effect transistor, and may be used to couple the source/drain region or the gate electrode of the vertical-transport field-effect transistor with a source/drain region or a gate electrode of another vertical-transport field-effect transistor.
摘要:
Embodiments of the present disclosure provide an integrated circuit (IC) structure and methods of electrically connecting multiple IC structures. An IC structure according to embodiments of the present disclosure can include: a first conductive region; a second conductive region laterally separated from the first conductive region; a first vertically-oriented semiconductor fin formed over and contacting the first conductive region; a second vertically-oriented semiconductor fin formed over and contacting the second conductive region; and a first gate contacting each of the first vertically-oriented semiconductor fin and the second conductive region, wherein the first gate includes: a substantially horizontal section contacting the first vertically-oriented semiconductor fin, and a substantially vertical section contacting the second conductive region.
摘要:
Disclosed are semiconductor structures comprising a field effect transistor (FET) having a low-resistance source/drain contact and, optionally, low gate-to-source/drain contact capacitance. The structures comprise a semiconductor body and, contained therein, first and second source/drain regions and a channel region. A first gate is adjacent to the semiconductor body at the channel region and a second, non-functioning, gate is adjacent to the semiconductor body such that the second source/drain region is between the first and second gates. First and second source/drain contacts are on the first and source/drain regions, respectively. The second source/drain contact is wider than the first and, thus, has a lower resistance. Additionally, spacing of the first and second source/drain contacts relative to the first gate can be such that the first gate-to-second source/drain contact capacitance is equal to or less than the first gate-to-first source/drain contact capacitance. Also disclosed are associated formation methods.