Methods of forming field effect transistors, including forming source and drain regions in recesses of semiconductor fins
    119.
    发明授权
    Methods of forming field effect transistors, including forming source and drain regions in recesses of semiconductor fins 有权
    形成场效应晶体管的方法,包括在半导体鳍片的凹槽中形成源区和漏区

    公开(公告)号:US09331176B2

    公开(公告)日:2016-05-03

    申请号:US13870471

    申请日:2013-04-25

    CPC classification number: H01L29/66795 H01L29/66545 H01L29/785 H01L29/7856

    Abstract: Methods of forming a fin-shaped Field Effect Transistor (FinFET) are provided. The methods may include selectively incorporating source/drain extension-region dopants into source and drain regions of a semiconductor fin, using a mask to block incorporation of the source/drain extension-region dopants into at least portions of the semiconductor fin. The methods may include removing portions of the source and drain regions of the semiconductor fin to define recesses therein. The methods may include epitaxially growing source and drain regions from the recesses in the semiconductor fin.

    Abstract translation: 提供了形成鳍状场效应晶体管(FinFET)的方法。 所述方法可以包括使用掩模来将源极/漏极延伸区掺杂物选择性地并入到半导体鳍片的源极和漏极区域中,以阻止源极/漏极延伸区掺杂物掺入到半导体鳍片的至少部分中。 所述方法可以包括去除半导体鳍片的源区和漏区的部分以在其中限定凹陷。 所述方法可以包括从半导体鳍片中的凹部外延生长源极和漏极区域。

    STRAINED STACKED NANOSHEET FETS AND/OR QUANTUM WELL STACKED NANOSHEET
    120.
    发明申请
    STRAINED STACKED NANOSHEET FETS AND/OR QUANTUM WELL STACKED NANOSHEET 审中-公开
    应变堆叠的纳米晶体管和/或量子堆积的纳米硅片

    公开(公告)号:US20160111284A1

    公开(公告)日:2016-04-21

    申请号:US14918954

    申请日:2015-10-21

    Abstract: Exemplary embodiments provide for fabricating a nanosheet stack structure having one or more sub-stacks. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial stack of one or more sub-stacks, each of the sub-stacks having at least three layers, a sacrificial layer A, and at least two different non-sacrificial layers B and C having different material properties, wherein the non-sacrificial layers B and C layers are kept below a thermodynamic or kinetic critical thickness corresponding to metastability during all processing, and wherein the sacrificial layer An is placed only at a top or a bottom of each of the sub-stacks, and each of the sub-stacks is connected to an adjacent sub-stack at the top or the bottom using one of the sacrificial layers A; proceeding with fabrication flow of nanosheet devices, such that pillar structures are formed at each end of the epitaxial crystalline stack that to hold the nanosheets in place after selective etch of the sacrificial layers; and selectively removing sacrificial layers A to all non-sacrificial layers B and C, while the remaining layers in the stack are held in place by the pillar structures so that after removal of the sacrificial layers An, each of the sub-stacks contains the non-sacrificial layers B and C.

    Abstract translation: 示例性实施例提供制造具有一个或多个子堆叠的纳米片堆叠结构。 示例性实施例的方面包括:生长一个或多个子堆叠的外延晶体初始堆叠,每个子堆叠具有至少三个层,牺牲层A和至少两个不同的非牺牲层B和C 具有不同的材料性质,其中非牺牲层B和C层保持低于在所有加工期间对应于亚稳态的热力学或动力学临界厚度,并且其中牺牲层An仅被放置在每个的顶部或底部 并且每个子堆叠使用牺牲层A之一连接到顶部或底部的相邻子堆叠; 继续纳米片装置的制造流程,使得在外延晶体堆叠的每个端部处形成柱结构,以在选择性蚀刻牺牲层之后将纳米片保持在适当位置; 并且将牺牲层A选择性地去除所有非牺牲层B和C,而堆叠中的其余层被柱结构保持就位,使得在去除牺牲层An之后,每个子堆包含非牺牲层 - 层B和C.

Patent Agency Ranking