Abstract:
A display device includes a display panel having a bendable part and flat parts, at least one flat part disposed at each side of the bendable part; and a panel guide attached to surfaces of the flat parts of the display panel, in which the display panel is attached to the panel guide when the bendable part is in a state of being tensioned at a reference strain included in an elastic range.
Abstract:
A method of fabricating a polysilicon layer includes forming a buffer layer on a substrate, forming a metal catalyst layer on the buffer layer, diffusing a metal catalyst into the metal catalyst layer to the buffer layer, removing the metal catalyst layer, forming an amorphous silicon layer on the buffer layer, and annealing the substrate to crystallize the amorphous silicon layer into a polysilicon layer. The thin film transistor includes a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate insulating layer disposed above the substrate and on the semiconductor layer, a gate electrode disposed on the gate insulating layer, a source electrode and a drain electrode both electrically connected to the semiconductor layer, and a metal silicide disposed between the buffer layer and the semiconductor layer.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
Abstract:
A method of forming a polycrystalline silicon layer includes forming a first amorphous silicon layer and forming a second amorphous silicon layer such that the first amorphous silicon layer and the second amorphous silicon layer have different film qualities from each other, and crystallizing the first amorphous silicon layer and the second amorphous silicon layer using a metal catalyst to form a first polycrystalline silicon layer and a second polycrystalline silicon layer. A thin film transistor includes the polycrystalline silicon layer formed by the method and an organic light emitting device includes the thin film transistor.
Abstract:
A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.
Abstract:
The present invention relates to a flat panel display device comprising a polysilicon thin film transistor and a method of manufacturing the same. Grain sizes of polysilicon grains formed in active channel regions of thin film transistors of a driving circuit portion and a pixel portion of the flat panel display device are different from each other. Further, the flat panel display device comprising P-type and N-type thin film transistors having different particle shapes from each other.
Abstract:
A method of manufacturing a thin film transistor (TFT) comprises forming a buffer layer, an amorphous silicon layer, and an insulating layer on a substrate; crystallizing the amorphous silicon layer as a polycrystalline silicon layer; forming a semiconductor layer and a gate insulating layer which have a predetermined shape by simultaneously patterning the polycrystalline silicon layer and the insulating layer; forming a gate electrode including a first portion and a second portion by forming and patterning a metal layer on the gate insulating layer. The first portion is formed on the gate insulating layer and overlaps a channel region of a semiconductor layer, and the second portion contacts the semiconductor layer. A source region and a drain region are formed on the semiconductor layer by doping a region of the semiconductor layer. The region excludes the channel region overlapping the gate electrode and constitutes a region which does not overlap the gate electrode. An interlayer insulating layer is formed on the gate electrode so as to cover the gate insulating layer; contact holes are formed on the interlayer insulating layer and the gate insulating layer so as to expose the source region and the drain region, and simultaneously an opening for exposing the second portion is formed. A source electrode and a drain electrode are formed by patterning a conductive layer on the interlayer insulating layer. The source electrode and the drain electrode are electrically connected to the source region and the drain region via the contact holes, and simultaneously the second portion exposed via the opening is removed.
Abstract:
A thin film transistor (TFT) includes a semiconductor on a substrate; an ohmic contact overlapping at least a portion of the semiconductor; a source electrode and a drain electrode on the ohmic contact; a gate insulating layer covering the semiconductor; and a gate electrode overlapping the semiconductor and between the source electrode and the drain electrode on the gate insulating layer, wherein the gate electrode is laterally separated from the drain electrode by a first distance and is laterally separated from the source electrode by a second distance.
Abstract:
A high-speed flat panel display has thin film transistors in a pixel array portion in which a plurality of pixels are arranged and a driving circuit portion for driving the pixels of the pixel array portion, which have different resistance values than each other or have different geometric structures than each other. The flat panel display comprises a pixel array portion where a plurality of pixels are arranged, and a driving circuit portion for driving the pixels of the pixel array portion. The thin film transistors in the pixel array portion and the driving circuit portion have different resistance values in their gate regions or drain regions than each other, or have different geometric structures than each other. One thin film transistor has a zigzag shape in its gate region or drain region or has an offset region.
Abstract:
A display module may include a flexible panel that is bent in a direction such that a compressive stress is exerted on a display unit within a housing.